• Title/Summary/Keyword: wood particle

Search Result 223, Processing Time 0.019 seconds

Study of the method of production of excavated arrow bundle and its conservation treatment (발굴 출토 화살다발 제작기법 연구 및 보존처리)

  • Lee, Byeonghoon;Choi, Bobae;Huh, Ilgwon
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.9-26
    • /
    • 2021
  • This paper describes the production methods that were originally used for an arrow bundle excavated from a Bronze Age residential area in Auraji in Jeongseon, Gangwon-do Province and the conservation treatment process that it subsequently underwent. An arrow conventionally consists of an arrowhead and a shaft. It is rare to excavate a shaft along with an arrowhead in a complete form since the shaft is made of organic materials. Notably, the arrow bundle from the Auraji site is of great significance as it shows traces of tangless stone arrowheads attached to charred shafts and offers an important case of the split end of a piece of a tree being inserted into an arrowhead. For a further examination of the characteristics of the arrows from Auraji, microscopic investigation was conducted and the type of wood used for the arrow shafts was examined. The sequence and direction of processing and the particle sizes of the grinding tools were revealed through the analysis of traces of grinding on the stone arrowheads. The shaft is presumed to have been made from a green length of three-year-old willow (Salix spp.). A curing agent with a high degree of waterproofing and reversibility was used during the on-site curing process according to demands of the surrounding environment, and a technique that the authors call the "Bridge" method was used for emergency collection of the relics. Once the bundle was transferred to the conservation treatment lab, reinforcing materials were carefully chosen as it was important not to damage the relics during the process of turning them for the repair of their reverse sides. For this purpose, artificial clay was selected since it can safely bear a load and has excellent physical properties. Finally, detached parts were rejoined, the relics and their surrounding materials were cleaned, and the bottom sides were finished with epoxy resin prior to the display of the relics at the museum.

Effects of Wood Particles and Steel Wire Compositions on Physical and Mechanical Properties of the Boards (목재(木材)파아티클과 철선(鐵線) 복합체(複合體)가 보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 미치는 영향(影響))

  • Park, Heon;Lee, Pill-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.3-44
    • /
    • 1986
  • In order to obtain the basic physical and mechanical properties of steel wire reinforced particleboard, particleboards were formed with large particles through 2.11 mm (12 meshes) and retained on 1.27mm (20 meshes) sieves and small particles through 1.27mm (20 meshes) and retained on 0.42mm (60 meshes) sieves from the plywood mill wastes of meranti (Shorea spp.) in the form of pallmanchips, applying urea-formaldehyde resin as an adhesive on the particle surface in 10 percent on the oven dried weight of particles, and arranging steel wires of 1mm in diameter 5,10,15,20, and 25mm in longitudinal and transverse direction with crossing in the mid of the board depth in single layer boards, 10mm in longitudinal or transverse direction without crossing in two layers and 10mm in longitudinal and transverse directions with and without crossing in three steel wire layers boards. The stepwise 9-minutes-multi-pressing schedule in 5 minutes at 35 kgf/$cm^2$, 2.5 minutes at 25 kgf/$cm^2$. and 1.5 minutes at 15 kgf/$cm^2$ was applied for $300{\times}200{\times}13$mm board at the temperature of 160$^{\circ}C$ in a hot press. Specific gravity, thickness swelling, bending properties of modulus of rupture (MOR), modulus of elasticity(MOE), work to proportional limit, and work to ultimate load, internal bond (IB), and screw holding power(SHP) of the reinforced boards were analyzed on the wire openings and wire layers. The results obtained are summarized as follows; 1) In specific gravity, particleboards with large particles and small particles had higher value with more steel wire placements and more steel layers composition, 2) Particleboards with large particles in accordance with more steel wire liners composition gave very poor thickness swelling. 3) The mechanical properties of particleboards formed with large or small particles were reinforced with more steel wire layers. Therefore, bending strength was improved in modulus of rupture, modulus of elasticity, and work to ultimate load. Especiallv, particleboards with two or three steel wire layers showed the tension lamination effect when the steels in lower steel wire layer were oriented parallel to the board length. 4) The modulus of rupture, modulus of elasticity, and work to ultimate load in bending varied with opening area, distance of lengthwise wires multipled by distance of transverse wires. Particleboards formed with large particles resulted in higher value in modulus of rupture with 1.5-3 $cm^2$ opening area, 1-2cm distance between transverse wires, and 1.5-2.5cm distance between lengthwise wires. Particle boards formed with small particles showed higher value with 0.5-1.5$cm^2$ or 3.75-6.25 $cm^2$ opening area, 0.5 or 2.5cm distance between transverse wires. 5) In modulus of elasticity, particleboards formed with large particles with one steel wire layer suggested higher value with 5-3$cm^2$ opening area, 1-2.5cm distance between transverse wires and also 1-2.5 cm distance between lengthwise wires. Particleboards formed with small particles showed higher value with 0.75-1.25$cm^2$ or 3-6.25$cm^2$ opening area and 0.5 or 2.5cm distance between transverse wires. 6) Particleboards formed with large particles gaved higher value in work to ultimate load with 1-3$cm^2$ opening area. Particleboards formed with small particles showed increasing tendancy with decreasing opening area. 7) In internal bond and screw holding power, particleboards formed with large particles had increasing value in two and three steel wire layers compositions, but particleboards formed with small particles showed no difference. Particleboards formed with large particles containing one steel wire layer showed no difference in internal bond and screw holding power, and particleboards formed with small panicles containing one steel wire layer resulted in increasing value in internal bond and decreasing value in screw holding power in accordance with increase in opening area.

  • PDF

A Study on Physical and Mechanical Properties of Sawdustboards combined with Polypropylene Chip and Oriented Thread (폴리프로필렌사(絲)칩과 배향사(配向絲)를 결체(結締)한 톱밥보드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-41
    • /
    • 1988
  • For the purpose of utilizing the sawdust having poor combining properties as board raw material and resulting in dimensional instability of board, polypropylene chip (abbreviated below as PP chip) or oriented PP thread was combined with sawdust particle from white meranti(Shorea sp.). The PP chip was prepared from PP thread in length of 0.25, 0.5, 1.0 and 1.5 cm for conventional blending application. Thereafter, the PP chip cut as above was combined with the sawdust particle by 3, 6, 9, 12 and 15% on the weight basis of board. Oriented PP threads were aligned with spacing of 0.5, 1.0 and 1.5cm along transverse direction of board. The physical and mechanical properties on one, two and three layer boards manufactured with the above combining conditions were investigated. The conclusions obtained at this study were summarized as follows: 1. In thickness swelling, all one layer boards combined with PP chips showed lower values than control sawdustboard, and gradually clear decreasing tendendy with the increase of PP chip composition. Two layer board showed higher swelling value than one layer board, but the majority of boards lower values than control sawdustboard. All three layer boards showed lower swelling values than control sawdustboard. 2. In the PP chip and oriented thread combining board, the swelling values of boards combining 0.5cm spacing oriented thread with 1.0 or 1.5cm long PP chip in 12 and 15% by board weight were much lower than the lowest of one or three layer. 3. In specific gravity of 0.51, modulus of rupture of one layer board combined with 3% PP chip showed higher value than control sawdustboard. However, moduli of rupture of the boards with every PP chip composition did not exceed 80kgf/cm2, the low limit value of type 100 board, Korean Industrial Standard KS F 3104 Particleboards. Moduli of rupture of 6%, 1.5cm-long and 3% PP chip combined boards in specific gravity of 0.63 as well as PP chip combined board in specific gravity of 0.72 exceeded 80kgf/$cm^2$ on KS F 3104. Two layer boards combined with every PI' chip composition showed lower values than control sawdustboard and one layer board. Three layer boards combined with.1.5cm long PP chip in 3, 6 and 9% combination level showed higher values than control sawdustboard, and exceeded 80kgf/$cm^2$ on KS F 3104. 4. In modulus of rupture of PP thread oriented sawdustboard, 0.5cm spacing oriented board showed the highest value, and 1.0 and 1.5cm spacing oriented boards lower values than the 0.5cm. However, all PP thread oriented sawdustboards showed higher values than control saw-dustboard. 5. Moduli of rupture in the majority of PP chip and oriented thread combining boards were higher than 80kgf/$cm^2$ on KS F 3104. Moduli of rupture in the boards combining longer PP chip with narrower 0.5cm spacing oriented thread showed high values. In accordance with the spacing increase of oriented thread, moduli of rupture in the PP chip and oriented thread combining boards showed increasing tendency compared with oriented sawdustboard. 6. Moduli of elasticity in one, two and three layer boards were lower than those of control sawdustboard, however, moduli of elasticity of oriented sawdustboards with 0.5, 1.0 and 1.5cm spacing increased 20, 18 and 10% compared with control sawdustboard, respectively. 7. Moduli of elasticity in the majority of PP chip and oriented thread combining boards in 0.5, 1.0 and 1.5cm oriented spacing showed much higher values than control sawdustboard. On the whole, moduli of elasticity in the oriented boards combined with 9% or less combination level and 0.5cm or more length of PP chip showed higher values than oriented sawdustboard. The increasing effect on modulus of elasticity was shown by the PP chip composition in oriented board with narrow spacing. 8. Internal bond strengths of all one layer PP chip combined boards showed lower values than control sawdust board, however, the PP chip combined boards in specific gravity of 0.63 and 0.72 exceeded 1.5kgf/$cm^2$, the low limit value of type 100 board and 3kgf/$cm^2$, type 200 board on KS F 3104, respectively. And also most of all two, three layer-and oriented boards exceeded 3kgf/$cm^2$ on KS F. 9. In general, screw holding strength of one layer board combined with PP chip showed lower value than control sawdustboard, however, that of two or three layer board combined with PP chip did no decreased tendency, and even screw holding strength with the increase of PP chip composition. In the PP chip and oriented PP thread combining boards, most of the boards showed higher values than control sawdustboard in 9% or less PP chip composition.

  • PDF