• Title/Summary/Keyword: wood industry

Search Result 606, Processing Time 0.023 seconds

Enzymatic and mechanical treatment on chemical pulp

  • Yung, B.S.;Shin, Yoon-Chul;Jeon, Yang
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.172-177
    • /
    • 1999
  • Effect of fiber treatment with cellulase (Liftase A40), and with two refining methods (Valley beating and impact refining) on wood fiber and handsheet properties were investigated at three refining levels (300, 400, and 500ml) for two furnishes (NBKP and LBKP). Part of the treated furnishes were classified by 150 mesh screen into fine-free fiber, and fines. Fiber length analysis, WRV, zero-span strength, and other handsheet mechanical properties were compared. The study showed that Liftase A40 lowered the zero-span and the folding endurance of both furnishes (NBKP much more and LBKP much less). Pretreatment with Liftase A 40 followed by refining significantly lowered the fiber length and refining energy to reach to the target freeness. Impact refining, which is done by hitting the fibers vertically with rod at 20% solid content, kept the fiber length increased WRV, and improved handsheet mechanical properties much more than valley beating. Properties of fines from different sources were compared in detail in the study.

Effect of Traditional Hanji Manufacturing Process on Its Physical Properties (전통한지의 처리공정에 따른 물성변화)

  • Seo, Yung B.;Choi, Chan-Ho;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.28-34
    • /
    • 2001
  • Korea traditional handmade paper, Hanji, has been known for more than thousand years for its high strength, high whiteness, high gloss, good ink reception and long lasting quality. Main component fiber of the Hanji is called 'Dak', which is the bast fiber of the Korea paper mulberry ($\textit{Broussonetia kazinoki}$). Dak has long fiber length, and high cellulose DP, if processed properly. The quality of Hanji is partly from the superior quality of Dak over wood fiber, and partly from the traditional papermaking process. The traditional papermaking process includes pulping, bleaching, refining, use of natural polymer, and sheet making process. Every traditional process has its special role. Comparisons between the modern papermaking technology and the traditional process were made in this study. The traditional process effectively protected cellulose DP in pulping and bleaching process, protected fiber length in refining process, and developed the high strength in the sheet forming process over the modern papermaking process.

  • PDF

Effect of Dissolved and Colloidal Contaminants of Newsprint Machine White Water on Water Surface Tension and Paper Physical Properties

  • Consultant, Seika-Tay
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.61-69
    • /
    • 1999
  • Contaminants such as fatty acids, triglycerides, resin acids and foam collected from a high yield sulfite weak liquor storage tank lowered the water surface tension and reduced inter-fibre bonding but also tended to benefit sheet opacity. Some common wet end additives such as defoamers and dispersants gave similar results. Lignosulfonate and naphthalene sulfonate showed little if any negative effect on both surface tension and sheet strength properties. Among the natural wood extractives. fatty acids were identified to be most detrimental followed by triglycerides and then resin acids. In order to alleviate the detrimental impact of these contaminants, membrane separation, air floatation and ozone treatment were carried out on paper machine white water samples. The effect of these treatments on removal of fatty and resin acids was quantified by a GC-Mass analysis. Reverse osmosis with a 1000 molecular weight cut off membrane failed to totally reject fatty and resin acids, but markedly reduced losses of sheet properties due to contaminants. Ozone treatment resulted in a significant increase of the surface tension and air floatation was considered to be a practical and useful method for removing fatty and resin acids from the machine white water.

Large Scale Applications of Nanocellulosic Materials - A Comprehensive Review -

  • Lindstrom, Tom;Naderi, Ali;Wiberg, Anna
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.5-21
    • /
    • 2015
  • The common production methods of nanocellulosic (cellulosic nanofibrils, CNF) materials from wood are being reviewed, together with large scale applications and particularly papermaking applications. The high energy demand for producing CNF has been one particular problem, which has been addressed over the years and can now be considered solved. Another problem was the clogging of homogenizers/microfluidizers, and the different routes to decrease the energy demand. The clogging tendency, related to the flocculation tendency of fibres is discussed in some detail. The most common methods to decrease the energy demand are TEMPO-oxidation, carboxymethylation and mechanical/enzymatic pre-treatments in the order of increased energy demand for delamination. The rheology characteristics of CNF materials, i.e. the high shear viscosity, shear thinning and the thixotropic properties are being illuminated. CNF materials are strength adjuvants that enhance the relative bonded area in paper sheets and, hence increase the sheet density and give an increased strength of the paper, particularly for chemical pulps. At the same time papers obtain a lower light scattering, higher hygroexpansion and decreased air permeability, similar to the effects of beating pulps. The negative effects on drainage by CNF materials must be alleviated through the appropriate use of microparticulate drainage aids. The use of CNF in films and coatings is interesting because CNF films and coatings can provide paper/board with good oxygen barrier properties, particularly at low relative humidities. Some other high volume applications such as concrete, oil recovery applications, automotive body applications and plastic packaging are also briefly discussed.

Effect of Spreading of Neutral Sizing Agent, Alkylketene Dimer, on Sizing Development

  • Seo Won-Sung;Shin Jong-Ho;Cho Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.1-7
    • /
    • 2005
  • The objective of this work was to investigate the effect of spreading behavior of the sizing agents (AKD or dialkyl ketone) on the sizing development of AKD-sized paper. There was a direct relationship between the spreading behavior of the sizing agents and their melting points. Both AKD and dialkyl ketone showed no substantial spreading until the temperature reaches to their melting points. Consequently, dialkyl ketone did not provide sizing development when the paper was heat-treated below $75^{\circ}C$, while AKD provided sizing effect even the paper heated at $50^{\circ}C$. The ketone, however, provided rather higher sizing effect than that of AKD, when the paper was heat-treated over $100^{\circ}C$. This result means that the ketone also gives sizing development to paper, moreover the ketone could give higher sizing effect to paper than AKD when it was melted and well spreaded on the fiber surface. While the ketone introduced to papers from hydrolyzed AKD emulsion could not contribute to sizing development.

Production of Bacterial Cellulose and Its Modification (박테리아 셀룰로오스의 생산 및 개질)

  • 민두식;조남석;최태호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.26-33
    • /
    • 1997
  • The bacterial celluloses are very different in its physical, chemical and morphological structures compared to wood cellulose. These fibers have many unique properties that are potentially and commercially beneficial. This study was aimed to elucidate the production of bacterial celluloses and to improve their physical properties by chemical pretreatment. Bacterial celluloses produced by static culture had gel-like pellicle structure. The pellicle thickness was increased with the increasing time, and its layer was about 1.8cm after one-month incubation. The pellicles extruded from the cells of Acetobacter had a non-crystalline structure during initial growing stages, gradually getting crystaliyzed with the incubation time elapse, and eventually fumed to the cellulose I crystals. Young's modulus of bacterial cellulose sheet was increased with increasing NaOH concentration, and resulted in the highest at 5% NaOH concentration. Similar results with NaClO3 pretreatment can be observed. Too concentrated alkali solutions induced the destruction of cellulose fibrils and changed the mechanical properties of the sheets. These alkaline pretreatment have removed non-cellulosic components(NCC) from the bacterial cellulose, and enhanced inter-abrillar bonding by direct close contact among cellulosic fibrils.

  • PDF

Utilization of Kenaf Cultivated in Korea(I) - Growth and Anatomical Characteristics of Kenaf Cultivated in Korea - (국내산 Kenaf 이용에 관한 연구(제1보) -국내에서 재배한 kenaf의 생장 및 해부학적 특성-)

  • 이명구;윤승락
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.68-74
    • /
    • 2003
  • Kenaf(Hibiscus cannabinus L.) cultivar, Tainung 2, had been grown for 152 days at the experimental farm of Jinju National University, Gajoa-dong, Jinju-si, Kyongnam, Korea. The planting, growth rate, fertilization and structural characteristics as well as the cultivation and growth characteristics of kenaf, and the product usage were investigated. The narrowest diameter at kenaf bottom was 10 mm, the widest 42 mm and the average about 28 mm, and the shortest height 150 cm, the tallest 480 cm and the average about 350 cm. The weight of a core fraction was 68.1% and a bast fraction 31.9%. The weight ratio of core material to bast fiber was 2.31. The weight ratio of dry stem was 73.5% and that of leaves 26.5%. The weight of dry plant produced in 1 $m^2$ was 1,467 g, and about 1,052 g of stem could be used for the commercial purpose, The application of fertilizers resulted in the increase of the growth rate of the diameter at plant bottom and the height. Bast fiber, phloem ray and cortex parenchyma cell were observed in bast, and vessel, wood fiber and ray in core.

Alkaline Sizing of Mechanical Pulp

  • Kim, Bong-Yong;Akira Isogai
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.1-7
    • /
    • 2000
  • Alkaline Sizing behavior and mechanism of handsheets, which were prepared from thermomechanical pulp (TMP) with alkylketene dimer (AKD), were studied in terms of the conditions of the handsheet-making. AKD content in the TMP handsheets was increased with increasing of AKD addition level and the addition of a polyamideamine-epichlorohydrin resin (PAE) clearly enhanced AKD retention as well as the resultant sizing performance of TMP handsheets. Although drying of the AKD sized TMP webs at $20^{\circ}C$ led to no or quite low sizing level, but TMP handsheets sized with AKD had higher sizing degrees with increasing of the temperature of heat treatment. Scanning electron microscopic observations of the AKD-sized TMP handsheets showed that AKD emulsion particles were present on pulp fiber surfaces independently without coagulation in the TMP handsheets dried at $20^{\circ}C$. Heat treatment of the AKD-sized handsheets resulted in disappearance of the AKD emulsion particles because of their melting and spreading. The addition of calcium carbonate filler to the TMP suspensions did not influence on AKD content in the TMP handsheets. Nevertheless, their sizing degrees clearly increased by the addition of $CaCO_3$filler. Probably, AKD molecules adsorbed on the $CaCO_3$filler particles contribute to the enhancement of sizing performance. Thus, AKD can give sizing features effectively to the TMP handsheets, when they are made under suitable conditions.

  • PDF

Development of multipurpose seed paper from waste paper(II) - Focused on field test of manufactured seed paper - (폐지를 이용한 기능성 육묘지의 제조(제2보) - 육묘지 적성 시험 -)

  • Eom, Tae-Jin;Park, Soung-Bae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.30-37
    • /
    • 2007
  • The seed paper was used in farm field recently for a sound young plant. The most of seed paper are made of synthetic non-woven sheet. Therefore, it is very difficult to bio-degrade in soil and is very hard to have some special function, for example keeping herbicide and/or insecticide activity because of its lack of chemical acceptability. The purpose of this research is manufacture of seedling paper which have a function of herbicide activity from waste paper. The fiber properties from waste paper were remarkably improved by fine removal with washing and/or flotation process. The paper-making ability for seed paper was enhanced with enzyme treatment of secondary fibers. The paper for seedling must have a good bio-degradation ability in soils. The absorption amount of chemical like as dithiopyr was increased remarkably in enzyme treated base paper. The embossing treatment of base paper was very effective for seed attachment and chemicals retention. And also, the developed seed paper showed a good penetration property of young root through embossed paper.

Determination of crystallinity index of cellulose depending on sample preparation and analysis instruments (시료 조건 및 측정방법에 따른 셀룰로오스의 결정화도 평가)

  • Ahn, Jung-Eon;Youn, Hye-Jung;Joung, Yang-Jin;Kim, Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.43-50
    • /
    • 2012
  • The crystallinity index is an important characteristic of cellulose. The crystallinity value is different depending on the adopted instrument. In this study, we determined a crystallinity index of cotton and wood celluloses using wide-angle X-ray scattering (WAXS), powder X-ray diffractometer (PXRD), and cross polarization/magic angle spinning solid-state $^{13}C$ nuclear magnetic resonance spectroscopy (CP/MAS solid-state $^{13}C$ NMR). The specimen was prepared in forms of powder, sheet and pallet. With the comparison of the obtained crystallinity indices of the cellulose, the effects of the analysis instrument, the sample preparation and analysis method were investigated. Among three instruments, the crystallinity indices by PXRD and NMR had a good relationship and reproducibility, and WAXS gave the crystallinity index with poor reproducibility. In the case of analysis methods of crystallinity indices, the Segal method showed higher value than that of the Ruland-Vonk method. We expect that this study would be applicable to evaluate the crystallinity index of various cellulose materials with accuracy and reproducibility.