• Title/Summary/Keyword: wood filler

Search Result 71, Processing Time 0.016 seconds

Study on the Development and Properties of Ceramics Restoration Purpose Urethane resin with Excellent Reversibility (가역성이 우수한 도자기 복원용 Urethane resin의 개발 및 물성에 대한 연구)

  • Oh, Seung Jun;Park, Gi Jung;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • In the case of adhesives & restoration agents currently being used for the preservation treatment of ceramics and earthenware, epoxy type, cellulose type and cellulose type are mainly being used. However, they are showing various problems such as re-detachment from severe contraction, color change from yellowing, work inconvenience of staining on tools and hand during usage and irreversibility. For the purpose of solving the issues of yellowing and irreversibility of epoxy resin being used to restore ceramics, urethane synthetic resin with low yellowing excellent reversibility has been developed in this study. The adhesive strength of urethane resin that has been developed has excellent properties with 2.07MPa for undiluted solution, which is 1.5 times higher than that of existing material EPO-$TEK301^{(R)}$ 1.21MPa. The result of workability measurement showed that the wear rate of urethane resin (in Talc 50wt%) was 1.09%, which was somewhat higher than that of existing material Quick $Wood^{(R)}$ (1.02%). In addition, its wear rate is two times higher than that of $EPO-TEK301^{(R)}$ (0.41%) and $L30^{(R)}$ (0.39%), thereby showing an advantage in its forming process compared to existing materials. As for the advantage of urethane resin of reversibility experiment, 12 hours after acetone, ethyl alcohol deposition, urethane resin and filler talc were dissolved 100% while showing powdering phenomenon. Compared to 0% reversibility of existing epoxy resin, it has much superior reversibility. The result of UV rays experiment to evaluate its durability showed that ${\Delta}E^*ab$ color change value based on undiluted solution of urethane resin was 2.76 before & after UV rays exposure, which was a decrease by about 7-20 times compared to that of existing resin, thereby minimizing the issue of heterogeneity.