• 제목/요약/키워드: wood fibers

검색결과 226건 처리시간 0.02초

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 추계학술발표논문집
    • /
    • pp.168-182
    • /
    • 2001
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The 'stiff' fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of 'stiff' fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept.

  • PDF

특수섬유를 이용한 보안용지의 개발 (Use of New Fibers for the Development of Security Paper)

  • 정선영;길상혁;김영욱;서영범
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.16-23
    • /
    • 2012
  • Use of security papers for monetary papers, gift certificates, and lottery tickets increases every year. As the use of security papers increase, there are more possibility of counterfeits. In this study, we used unique fibers from the sea to increase the difficulties against counterfeiting. The red algae fibers give opacity as much as calcium carbonates, and have unique shape in length ($500{\sim}900\;{\mu}m$) and width ($1{\sim}4\;{\mu}m$) to be discerned from other natural fibers such as wood and cotton fibers. We mixed red algae fibers to wood fibers in a series of fixed ratios to make single and multiply papers for making security papers. Paper with dyed red algae fibers were also used. Paper made without fillers gave enough opacity for printing when red algae fibers were used more than 20% of the fiber furnish. Those properties may allow red algae fibers to be a potential candidate for fiber raw materials of security paper.

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.63-69
    • /
    • 2002
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The "stiff" fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of "stiff" fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept. apply this concept.

Improvements in the Physical Properties of Hanji by Using Red Algae Pulp

  • Seo, Yung-Bum;Kim, Young-Wook;Lee, Min-Woo;Jung, Sun-Young
    • 펄프종이기술
    • /
    • 제41권5호
    • /
    • pp.33-37
    • /
    • 2009
  • Hanji is a traditional Korean handmade paper, made of bast fibers of the paper mulberry. Its fiber furnish is much more expensive than wood fiber furnish. Hanji with a low basis weight requires additional opacity and smoothness for better writing and printing. Filler such as calcium carbonate can not be used to raise the opacity of Hanji because of its low retention in low basis weight paper and the high freeness of the Hanji fiber furnish. Addition of red algae pulp, which is prepared from marine red algae to the Hanji fiber furnish negated retention problems happening in the case of mineral filler addition, and produced a substantial improvement in the opacity and smoothness of Hanji. The higher retention was due to the much larger size of the red algae fibers compared to the mineral fillers. The improvement in opacity and smoothness were also due to the shape of the red algae fibers: that red algae fibers are narrower in widths and shorter in lengths than wood fibers results in increased surface area and smoothness.

Characterization of Carboxylated Cellulose Nanocrystals from Recycled Fiberboard Fibers Using Ammonium Persulfate Oxidation

  • KHANJANZADEH, Hossein;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.231-244
    • /
    • 2020
  • As a way of finding value-added materials from waste medium density fiberboard (MDF), this study characterized cellulose nanocrystals (CNCs) isolated by ammonium persulfate (APS) oxidation using recycled MDF fibers. Chemical composition of the recycled MDF fibers was done to quantify α-cellulose, hemicellulose, lignin, nitrogen, ash and extractives. The APS oxidation was performed at 60 ℃ for 16 h, followed by ultrasonication, which resulted in a CNC yield of 11%. Transmission electron microscope images showed that rod-like CNCs had an average length and diameter of 167±47 nm and 8.24±2.28 nm, respectively, which gave an aspect ratio of about 20. The conductometric titration of aqueous CNCs suspension resulted in a carboxyl content of 0.24 mmol/g and the degree of oxidation was 0.04. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy clearly showed the presence of carboxyl group on the CNCs prepared by the APS oxidation. The change of pH of the aqueous CNC suspension from 4 to 7 converted the carboxyl group to sodium carboxylate group. These results showed that the APS oxidation was facile and CNCs had a one-step preparation method, and thus suggested an optimization of the oxidation condition in future.

A Modified Method for the Determination of the Carboxyl Groups in Fibers by Headspace Gas Chromatography

  • Hou, Qingxi;Chai, Xin-Sheng;Zhu, Junyong
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.265-270
    • /
    • 2006
  • This paper reports an improved headspace gas chromatographic method for the determination of carboxyl group content in wood fibers. Pretreatment of wood fibers was applied using dilute HCl to convert carboxyl groups to carboxylic acid groups and then using deionized water to wash fiber samples thoroughly. The samples were finally air dried. Sodium bicarbonate solution was used to react with carboxylic acid groups of the pretreated fibers in a closed testing vial to release carbon dioxide. The content of carboxyl groups in fibers was accurately quantified by determining the amount of carbon dioxide released by a headspace gas chromatograph equipped with a thermal conductivity detector. The modified process for fiber sample pretreatment increased the reliability and accuracy in measuring carboxylic acid groups. The present method is simple, accurate.

  • PDF

Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard

  • Hong, Min-Kug;Lubis, Muhammad Adly Rahandi;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권4호
    • /
    • pp.444-455
    • /
    • 2017
  • This study was conducted to evaluate the effect of panel density and resin content on properties of medium density fiberboard (MDF) to obtain some insights on MDF properties as a function of panel density and resin content. MDF panels with different panel densities such as 650, 700, 750 and $800kg/m^3$ were manufactured by adjusting the amount of wood fibers in the mat forming. MDF panels were also fabricated by spraying 8, 10, 12, and 14% of urea-formaldehyde (UF) resins onto wood fibers in a drum-type mechanical blender to fabricate MDF panels with a target density of $650kg/m^3$. As the panel density and resin content increased, the internal bonding (IB) strength of MDF panel consistently increased. Modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal resistance (SWR) had a similar trend to the IB strength. In physical properties, thickness swelling (TS) and water absorption (WA) decreased with an increase in both panel density and resin content. In addition, the formaldehyde emission (FE) which increased as the panel density and resin content became greater. In overall, the panel density of MDF had more significant effect than the resin content in all properties of MDF panels, indicating that it was better to adjust the panel density rather than the resin content for MDF manufacture.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권2호
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

활판 인쇄용지의 압축성 및 물리적특성 향상을 위한 해조류 섬유의 적용 (Application of Sea Algae Fiber for the Improvement of Compressibility and Physical Properties of Letter Press Printing Paper)

  • 김병현;서영범
    • 펄프종이기술
    • /
    • 제40권1호
    • /
    • pp.15-22
    • /
    • 2008
  • For the improvement of letterpress printing paper quality, special fibers obtained from the sea were used by mixing with wood fibers. The sizes of the special fibers, which were from red algae in the sea, were 0.5-1 mm in length, and 3-7 ${\mu}m$ in width, respectively, and the fibers were supplied by Pegasus Research Inc. for the study. From the study, it was found that 10% addition of algae fibers greatly improved paper surface strength and internal bonding strength. The compressibility was estimated by utilizing 'Print-surf method' at high clamping pressure and with hard backing. Again, 10% addition of algae fibers greatly improved the compressibility of the paper. These results were expected that algae and wood fibers were distributed evenly through the sheet, and integrated one another to leave no empty space inside the paper.