• Title/Summary/Keyword: wood chip

Search Result 126, Processing Time 0.024 seconds

Combustion Characteristics of Wood Materials (1) (Mass Reduction and Ignition Delay) (목재의 연소특성(1) (질량감소와 착화지연))

  • Kim, Chun-Jung
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1999
  • Combustion characteristics of the wood chips(balsa chips) were experimentally investigated with respect to the thermal recycle system of the urban waste. The urban waste contains plastics, vegetable and wood materials. Wood was chosen as an example of the one of the component of urban dust. A small wood chip was burned in a electric furnace by the micro-electric balance. The mass reduction rate was normalized by the initial mass of test piece and the time of volatile combustion end. When the mass of the wood chips(balsa chips) was larger than 0.5g, the combustion similarity was found on the normalized mass reduction rate.

  • PDF

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

Effect of Gamma Irradiation on Wood Chip Saccharification Pretreated with NaOH (NaOH를 이용한 우드칩의 당화 전처리에 대한 감마선 조사 영향 연구)

  • Kim, Su-mi;Choi, Jong-il;Joe, Min-Ho;Kim, Jong-deog
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.431-435
    • /
    • 2016
  • The aim of this study was to investigate the effect of gamma irradiation on the pretreatment of wood chips with NaOH solution. The degree of saccharification was quantified by measuring reducing sugar and glucose concentrations after enzymatic hydrolysis. After pretreatment with 10 g/L NaOH, the wood chips were irradiated at the doses of 0, 50, 100, and 200 kGy, respectively. Among the irradiated samples, wood chips irradiated at the dose of 200 kGy had the highest reducing sugar concentration of 12.2 g/L. Also, to define the effect of irradiation before pretreatment, the wood chips were first gamma-irradiated and then pretreated with NaOH. When the NaOH treatment was conducted after irradiation at 200 kGy, the reducing sugar content was further increased to 13.4 g/L and glucose content of the wood chip was as high as 7.9 g/L. These results suggest that gamma irradiation may be the promising method for pretreatment of cellulose biomass.

Effects of Density, Resin and Particle Types on Properties of Composites from Wood Particle Mixed with Coating Paper

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 1999
  • This research was carried out to investigate the effects of density, resin and particle types on the physical and mechanical properties of the composites made from various wood particles mixed with coating paper. The experiment was designed to apply with three particles (flake, chip, and fiber) and three resin types (urea, phenol and PMDI resin). The mixed ratio of coating paper to wood particle was fixed on 50 to 50% in each board making. And also it was designed to apply for four density levels (0.6, 0.7, 0.8 and 0.9 g/$cm^3$) and four mixed formulations of coating paper to wood particle (10:90, 20:80, 30:70, and 40:60 %) to analyze clearly the effects of PMDI resin. Coating paper-wood particle composites have acceptable bending strength (MOR, MOE) though the mixed ratio of coating paper was increased, but have low internal bond strength and poor dimensional stability (WA, TS, LE). Composites with high density had higher mechanical properties but showed lower physical properties than composites with low density. In conclusion, at least up to 20% mixed ratios, coating paper-wood particle composites have acceptable physical and mechanical properties, and PMDI resin has possibility for coating paper-wood particle composite manufacture.

  • PDF

Morphological aspects of white-rot degraded oak wood by Trametes versicolor (Trametes versicolor에 의한 상수리나무의 분해형태)

  • Yoo, Tae-Bang;Yoon, Min-Ho;Choi, Woo-Young;Lee, Jong-Shin
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • Trametes versicolor(CV5) selected as a white-rot fungus with strong lignin degrading activity, in the previous paper, was investigated on a properties of degradation of wood lignin. Lignins of hardwoods, especially oak(Querous acutissima carruth) an paulownia (Paulownia coreana Uyeki) were considerably delignified by the CV5, however, softwoods used in this experiment were not delignified. Bavendamm's reaction was positive with several phenols on agar plates for the confirmation of a phenoloxidase secreted Through the morphologies of decayed wood chip observed with the aid of scanning electron microscopy, it was found that the hypha of CV5 penetrated the ray cells and vessels caused separation of the wood cellulose.

  • PDF

An Evaluation of Minimum Explosible Concentration and Explosion Severity of Coal Dust in a Thermal Power Plant (화력발전소용 석탄분진의 최소폭발농도와 폭발강도 평가)

  • Yeosong Yoon;Keun-won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • The use of low-grade coal is continuously increasing with the development of combustion technology and cost reduction for coal used in thermal power plants . During combustion, the latent heat of evaporation due to moisture is large, and there is a risk of spontaneous combustion and dust explosion during the process of storing and pulverizing coal. This study compared and evaluated the minimum explosive concentration and explosive strength of four types of coal dust-fine, coal dust-coarse, wood pallet+organic dust, and wood chip with coal powder collected from domestic power plant D. The minimum explosive concentration of coal dust was measured according to JIS Z 8818:2002, and the explosion strength was tested according to ASTM E1226 using a Siwek 20 L Chamber Apparatus. As a result of the minimum explosive concentration test, it was found that coal dust-fine has a risk of dust explosion, and since an explosion occurs at a dust concentration of 130 g/m3 of wood chips, it was found that there is a risk of explosion at the lowest dust concentration. According to the dust explosion class standard, Kst is less than 200 bar m/s, and all samples fall under the explosion class St 1, and the dust has a low risk of explosion.

Physicochemical Properties and Growth Characteristics of Wood Chip and Peat Moss Based Vegetation Media (우드칩과 피트모스를 원료로 하는 식생기반재의 물리·화학적 특성 및 생육 특성)

  • Kim, Ji-Su;Jung, Ji Young;Ha, Si Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.323-336
    • /
    • 2016
  • This study was carried out to evaluate the physicochemical properties of steam exploded wood chips for peat moss substitute in vegetation media. Also, the mixtures at the different ratios of peat moss and pretreated wood chips (90 : 10, 70 : 30 and 50 : 50 (w/w), respectively) were evaluated by physicochemical and plant growth characteristics. The pretreated wood chips was showed that bulk density, porosity and pH were $0.26g/cm^3$, 93.3% and 5.7, respectively. This result indicates that physicochemical properties was improved when wood chips was apply to steam explosion in the range of optimum physicochemical condition for vegetation media. In particular, the mixture ratio of peat moss and pretreated wood chips to 70 : 30 (w/w) showed higher seed germination, plant height and leaf growth than peat moss. Also, the bulk density, porosity, water holding capacity, pH and C/N ratio were $0.20g/cm^3$, 91.8%, 76.1%, 5.2 and 51.0 in the range of optimum physicochemical condition for vegetation media.

A Study on the Supply Methods of Heating Energy in Rural Regions by Using Wood Chips -Focusing on the Production Method of Wood Chips for Fuel though Natural Drying Method- (목재칩을 이용한 농촌지역 난방에너지 공급 방법 연구 -자연건조 방식을 통한 연료용 목재칩 생산방법을 중심으로-)

  • An, Byeong-IL;Ko, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.401-408
    • /
    • 2021
  • Supplies of wood chips for fuel tend to increase owing to energy decentralization and new renewable energy policies. This study suggests a technical method that is necessary in order to supply heating energy to rural regions by using wood chips for fuel. Therefore, this study investigates the effects of natural drying methods for eight months by installing a drying facility with natural ventilation capable of loading 10 tons of wood chips, and which derive a natural drying method based on this to meet the quality standards of wood chips for fuel. The study results confirm that it is possible to produce wood chips for high-quality fuel with water content at 20% or less after around 90 days of drying, provided that a drying facility with natural ventilation is equipped with materials that can be procured easily in rural regions. It is also possible to block the proliferation and fermentation of molds that affect the quality of wood chips, provided that intake and exhaust systems adhering to standards are equipped.