• Title/Summary/Keyword: wireless video streaming

Search Result 135, Processing Time 0.019 seconds

Selection of Scalable Video Coding Layer Considering the Required Peak Signal to Noise Ratio and Amount of Received Video Data in Wireless Networks (무선 네트워크에서 요구되는 평균 최대 신호 대 잡음비와 수신 비디오 데이터양을 고려하는 스케일러블 비디오 코딩 계층 선택)

  • Lee, Hyun-No;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • SVC(Scalable Video Coding), which is one form among video encoding technologies, makes video streaming with the various frame rate, resolution, and video quality by combining three different scalability dimensions: temporal, spatial, and video quality scalability. As the above SVC-encoded video streaming consists of one base layer and several enhancement layers, and a wireless AP(Access Point) chooses and sends a suitable layer according to the received power from the receiving terminals in the changeable wireless network environment, the receiving terminals supporting SVC are able to receive video streaming with the appropriate resolution and quality according to their received powers. In this paper, after the performance analysis for the received power, packet loss rate, PSNR(Required Peak Signal to Noise Ratio), video quality level and amount of received video data based on the number of SVC layers was performed, an efficient method for selecting the number of SVC layer satisfying the RSNR and minimizing the amount of received video data is proposed.

The Token Bucket Scheme to solve Buffer Overflow of Video Streaming in Wireless Network (무선 네트워크에서 비디오 스트리밍의 버퍼 오버플로우를 해결하기 위한 토큰버킷 기법)

  • Lee, Hyun-No;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.365-371
    • /
    • 2015
  • In wireless network, the amount of video streaming packet information in receiver replay buffer can be varied according tothe wireless network condition. By the effect, unforeseeable delay and jitter are generated and then busty video traffics can be made. If the amount of buffer information coming in receiver replay buffer is larger than the amount of a specific buffer information, buffer overflow is generated. Such a problem makes the image skip effect and packet loss, and then causes the quality degradation and replay discontinuity of the video streaming service in destination receiver. To solve the buffer overflow problem, this paper applies the token bucket for the busty traffic to the receiver terminal and analyzes the effect of the token bucket. The simulation result using NS-2 and JSVM shows that the proposed scheme with the token bucket has significantly better performance than the conventional scheme without the token bucket in terms of overflow generation number, packet loss rate and PSNR.

Channel-Adaptive Mobile Streaming Video Control over Mobile WiMAX Network (모바일 와이맥스망에서 채널 적응적인 모바일 스트리밍 비디오 제어)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • Streaming video service over wireless and mobile communication networks has received significant interests from both academia and industry recently. Specifically, mobile WiMAX (IEEE 802.16e) is capable of providing high data rate and flexible Quality of Service (QoS) mechanisms, supporting mobile streaming very attractive. However, we need to note that streaming videos can be partially deteriorated in their macroblocks and/or slices owing to errors on OFDMA subcarriers, as we consider that compressed video sequence is generally sensitive to the error-prone channel status of the wireless and mobile network. In this paper, we introduce an OFDMA subcarrier-adaptive mobile streaming server based on cross-layer design. This streaming server system is substantially efficient to reduce the deterioration of streaming video transferred on the subcarriers of low power strength without any modifications of the existing schedulers, packet ordering/reassembly, and subcarrier allocation strategies in the base station.

An Error Concealment Technique for MPEG-4 Video Transmission over Wireless Networks (무선 네트워크 환경에서의 MPEG-4 비디오 전송을 위한 에러 은닉 기법)

  • Park, Jeong-Beom;Eo, Jin-Woo
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.170-178
    • /
    • 2005
  • The video data corrupted by the transmission error due to packet loss induce error propagation in decoded video data, and cause poor video quality. To remedy these corrupted video data, there have been introduced two types of error concealment techniques: spatial or temporal error concealment algorithm. Computational overhead by using spatial error concealment algorithm is a serious disadvantage in mobile video data streaming environment. In this paper, we propose hybrid type error concealment technique recovering video quality of mobile device using MPEG-4 video streaming on error-prone wireless network. Our algorithm is implemented in MPEG-4 decoder. The algorithm adopts Intel Wireless MMX technology to provide high performance of portable embedded multimedia mobile device. It is proven that the proposed algorithm shows expected performance for a mobile streaming system(PDA) on IP channels. Our approach showed better processing speed and better video quality comparing with traditional error concealment algorithm.

  • PDF

An Intelligent Video Streaming Mechanism based on a Deep Q-Network for QoE Enhancement (QoE 향상을 위한 Deep Q-Network 기반의 지능형 비디오 스트리밍 메커니즘)

  • Kim, ISeul;Hong, Seongjun;Jung, Sungwook;Lim, Kyungshik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.188-198
    • /
    • 2018
  • With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

A Cost-Effective Rate Control for Streaming Video for Wireless Portable Devices

  • Hong, Youn-Sik;Park, Hee-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1147-1165
    • /
    • 2011
  • We present a simple and cost effective rate control scheme for streaming video over a wireless channel by using the information of mobile devices' buffer level. To prevent buffer fullness and emptiness at receivers, the server should be able to adjust sending rate according to receivers' buffer status. We propose methods to adjust sending rate based on the buffer level and discrete derivative of the buffer occupancy. To be compatible with existing network protocols, we provide methods to adjust sending rate by changing the inter-packet delay (IPD) at the server side. At every round-trip time, adjustments of sending rate are made in order to achieve responsiveness to sudden changes of buffer availabilities. A series of simulations and the prototype system showed that the proposed methods did not cause buffer overflows and it can maintain smoother rate control and react to bandwidth changes promptly.

Efficient Video Streaming Method over Wireless 3G Network (무선 3G 네트워크에서의 효율적인 비디오 전달 방법)

  • Dan, Byoung-Kyu;Lee, Sang-Ju;Nam, Hyeong-Min;Kim, Hye-Soo;Ko, Sung-Jea
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.51-52
    • /
    • 2006
  • In this paper, we propose an efficient video streaming method to improve quality of service (QoS) over wireless 3G network. In the proposed method, the video stream is adopted in various available bandwidth (AB) using dynamic frame skipping (DFS). In addition, error concealment (EC)compensates the video degradation by transmitting the MVs of the skipped frame. Experimental results indicate that the proposed method provides better QoS for video stream than the conventional methods.

  • PDF

Implementation of Exclusive OR-Based Video Streaming System (배타적 논리합 기반 비디오 스트리밍 시스템의 구현)

  • Lee, Jeong-Min;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1091-1097
    • /
    • 2022
  • In this paper, we implement the eXclusive OR-based Cast (XC) system that is a video streaming system using exclusive OR operations, and measure various performance metrics in wireless local area network (WLAN) environments. In addition, we investigate the performance improvement of the XC system considering various practical video streaming environments, while conventional studies analyzed the performance of XC through computer simulations in limited environments. To this end, we propose new control messages such as STR_REQ_MSG (SRM) that clients transmit to a video streaming server and STR_CON_MSG (SCM) that is used for the video streaming server to control the clients, and develop a new protocol by using the new control messages. According to the various measurement results using the implemented XC system, XC video streaming system can reduce the consumption of network bandwidth by 8.6% on average and up to 25% compared to the conventional video streaming system. In addition, the outage probability can be also reduced up to 76%.

A Robust And-Or Tree-based LT Encoded Symbol Packetization Algorithm for Video Streaming over Wireless Network (무선 네트워크 환경에서 효과적인 영상 스트리밍을 위한 And-Or 트리 기반의 LT 부호화 심볼 패킷화 알고리즘)

  • Lee, Dong-Ju;Kim, Wan;Yang, Yeon-Mo;Song, Hwang-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.749-757
    • /
    • 2011
  • In this paper, we propose a robust And-Or tree-based Luby transform encoded symbol packetization algorithm to minimize the quality degradation of video streaming service caused by packet losses over wireless network. To achieve this goal, the relationship among Luby transform encoded symbols are analyzed by using And-Or tree, and the proposed packetization algorithm is designed to minimize packet loss effects by reducing the dependency among packets conveying Luby transform encoded symbols. Finally, experimental results are provided to show the performance of the proposed algorithm.