• 제목/요약/키워드: wireless healthcare systems

검색결과 86건 처리시간 0.021초

Enhanced Secure Sensor Association and Key Management in Wireless Body Area Networks

  • Shen, Jian;Tan, Haowen;Moh, Sangman;Chung, Ilyong;Liu, Qi;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.453-462
    • /
    • 2015
  • Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using shortrange wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.

손실 값을 갖는 유비쿼터스 헬스케어 환경에서 신경망을 이용한 에이전트 기반 증상 패턴 분류 (Symptom Pattern Classification using Neural Networks in the Ubiquitous Healthcare Environment with Missing Values)

  • 마이클 안젤로 살보;이재완;이말례
    • 인터넷정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.129-142
    • /
    • 2010
  • 무선선서네트워크의 주요 응용분야 중 하나가 유비쿼터스 헬스케어 시스템이다. 하지만 무선센서네트워크가 가지고 있는 과제중의 하나는 데이터 중에 나타나는 높은 손실 율이다. 바이오 센서로부터 들어오는 데이터는 기지국에 도착되지 않을 수 있으며, 이 값은 손실 값(missing value)이 된다. 본 논문은 기지국에서 데이터를 수집하고, 손실 값을 처리한 후, 증상 패턴에 따라 건강상태를 분류하여, 비상시에 적절한 행동을 취할 수 있도록 하는 헬스케어 모니터 에이전트(HMA)를 제안한다. 이 에이전트는 유비쿼터스 헬스케어 환경에 적용되며, 건강상태를 인지하기 위한 증상패턴으로 바이오 센서 및 환자의 가족력으로 부터 생성된 데이터를 사용한다. 손실 값이 나타나면 HMA는 분류하기 전에 증상패턴의 손실 값을 채우기 위한 예측 알고리즘을 수행한다. 시뮬레이션 결과 HMA를 사용한 예측알고리즘이 다른 방법들에 비해 더 정확하게 증상패턴을 분류함을 보여주었다.

u-Health System을 위한 생체신호 모니터링에 관한 연구 (A Study on Monitoring of Bio-Signal for u-Health System)

  • 한영환
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.9-15
    • /
    • 2011
  • u-healthcare 시스템은 센서 네트워크로부터 수집된 대량의 생체신호를 신속히 처리 분석하여 의료진에게 전달함으로써 시간과 장소에 관계없이 환자에게 적절한 의료 서비스를 제공할 수 있다. 현존하는 u-healthcare 시스템들은 단지 환자의 건강 상태만을 모니터링 한다. 본 논문에서는 무선 센서네트워크에 기반한 u-health 모니터링의 프로토타입을 구현하고 검증하였다. 이 시스템은 수집된 생체 신호를 신속히 분석하여 의학적으로 의미 있는 결과를 도출하는 것이 용이하다. 이 모니터링 시스템은 피검자의 이상 데이터 수집 시에만 서비스 제공자에게 데이터를 전송한다. 이러한 방법은 모니터링부와 서비스 제공자사이의 무선 데이터 패킷의 부하를 줄일 수 있다. 실시간 생체 신호 모니터링 시스템을 구현함으로 유-헬스 서비스가 가능하게 되고 의료서비스의 효율성을 향상시킨다.

A Scalable Wireless Body Area Network for Bio-Telemetry

  • Saeed, Adnan;Faezipour, Miad;Nourani, Mehrdad;Banerjee, Subhash;Lee, Gil;Gupta, Gopal;Tamil, Lakshman
    • Journal of Information Processing Systems
    • /
    • 제5권2호
    • /
    • pp.77-86
    • /
    • 2009
  • In this paper, we propose a framework for the real-time monitoring of wireless biosensors. This is a scalable platform that requires minimum human interaction during set-up and monitoring. Its main components include a biosensor, a smart gateway to automatically set up the body area network, a mechanism for delivering data to an Internet monitoring server, and automatic data collection, profiling and feature extraction from bio-potentials. Such a system could increase the quality of life and significantly lower healthcare costs for everyone in general, and for the elderly and those with disabilities in particular.

무선 센서를 활용한 요추 가동 범위의 실시간 3차원 측정 (Real-time 3-Dimensional Measurement of Lumbar Spine Range of Motion using a Wireless Sensor)

  • 정우혁;지혜미;박재현
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.713-718
    • /
    • 2012
  • Lumber spine range of motion has been used to measure of physical and functional impairment by various tools from a ruler to 3D kinematic devices. However, pre-existing tools have problems in either movement or accuracy and reliability limitations. Accurate devices are limited by fixed space whereas simple devices are limited in measuring complex movements with less accuracy. In order to solve the location, movement and accuracy limitations at once, we have developed a novice measurement device equipped with accelerometer sensor and gyroscope sensor for getting three-dimensional information of motion. Furthermore, Kalman filter was applied to the algorithm to improve accuracy. In addition, RF wireless communication was added for the user to conveniently check measured data in real time. Finally, the measurement method was improved by considering the movement by a reference point. An experiment was conducted to test the accuracy and reliability of the device by conducting a test-retest reliability test. Further modification will be conducted to used the device in various joints range of motion in clinical settings in the future.

Design and Implementation of Location and Activity Monitoring System Based on LoRa

  • Lin, Shengwei;Ying, Ziqiang;Zheng, Kan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1812-1824
    • /
    • 2019
  • The location and human activity are usually used as one of the important parameters to monitor the health status in healthcare devices. However, nearly all existing location and monitoring systems have the limitation of short-range communication and high power consumption. In this paper, we propose a new mechanism to collect and transmit monitoring information based on LoRa technology. The monitoring device with sensors can collect the real-time activity and location information and transmit them to the cloud server through LoRa gateway. The user can check all his history and current information through the specific designed mobile applications. Experiment was carried out to verify the communication, power consumption and monitoring performance of the entire system. Experimental results demonstrate that this system can collect monitoring and activity information accurately and provide the long rang coverage with low power consumption.

Factors Affecting Medical Incident Care on WBAN

  • Lim, Sungryel;Lee, Hongchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.1058-1076
    • /
    • 2013
  • The WBAN(Wireless Body Area Network) supplies mobile convenience to our medical services. But if we have few effective control variables across this service deployment, the hidden distortions or defects of the system might threaten the lives and rights of the stakeholders. Therefore we need to increase the service credibility, to get WBAN effective. This study proposes a governance mechanism using feasible variables that are currently in use in practices in WBAN environments against medical incidents. Control variables were tested in Seoul National University hospital and related medical industries of South Korea. We assume that WBAN systems would be open based on integrating patients, medical employees and law enforcements to get smart theater operations against medical incidents by implementing proposed MJA(Multilateral Joint Analysis) model. MJA model also contributes to the convergence of computer systems and medical services by demonstrating flexible SOA(Service Oriented Architecture) dashboard of healthcare services with credibility factors in medicine. The important components in MJA model across WBAN, were found to be "Safety, Accuracy and Reliability" in priority order. Factor analysis, correlations and ANOVA were used to evaluate this model and an IT dashboard with a realization of mobile application, was used to support participants' decision-making.

An Adaptive Transmission Power Control Algorithm for Wearable Healthcare Systems Based on Variations in the Body Conditions

  • Lee, Woosik;Kim, Namgi;Lee, Byoung-Dai
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.593-603
    • /
    • 2019
  • In wearable healthcare systems, sensor devices can be deployed in places around the human body such as the stomach, back, arms, and legs. The sensors use tiny batteries, which have limited resources, and old sensor batteries must be replaced with new batteries. It is difficult to deploy sensor devices directly into the human body. Therefore, instead of replacing sensor batteries, increasing the lifetime of sensor devices is more efficient. A transmission power control (TPC) algorithm is a representative technique to increase the lifetime of sensor devices. Sensor devices using a TPC algorithm control their transmission power level (TPL) to reduce battery energy consumption. The TPC algorithm operates on a closed-loop mechanism that consists of two parts, such as sensor and sink devices. Most previous research considered only the sink part of devices in the closed-loop. If we consider both the sensor and sink parts of a closed-loop mechanism, sensor devices reduce energy consumption more than previous systems that only consider the sensor part. In this paper, we propose a new approach to consider both the sensor and sink as part of a closed-loop mechanism for efficient energy management of sensor devices. Our proposed approach judges the current channel condition based on the values of various body sensors. If the current channel is not optimal, sensor devices maintain their current TPL without communication to save the sensor's batteries. Otherwise, they find an optimal TPL. To compare performance with other TPC algorithms, we implemented a TPC algorithm and embedded it into sensor devices. Our experimental results show that our new algorithm is better than other TPC algorithms, such as linear, binary, hybrid, and ATPC.

Towards Evolutionary Approach for Thermal Aware In Vivo Sensor Networks

  • Kamal, Rossi;Hong, Choong-Seon
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.369-371
    • /
    • 2012
  • Wireless sensor networks have taken immense interest in healthcare systems in recent years. One example of it is in an in vivo sensor that is deployed in critical and sensitive healthcare applications like artificial retina, cardiac pacemaker, drug delivery, blood pressure, internal heat calculation, glucosemonitoring etc. In vivo sensor nodes exhibit temperature that may be very dangerous for human tissues. However, existing in vivo thermal aware routing approaches suffer from hotspot creation, delay, and computational complexity. These limitations motivate us toward an in vivo virtual backbone, a small subset of nodes, connected to all other nodes and involved in routing of all nodes, -based solution. A virtual backbone is lightweight and its fault-tolerant version allows in vivo sensor nodes to disconnect hotspot paths and to use alternative paths. We have formulated the problem as m-connected k-dominating set problem with minimum temperature cost in in vivo sensor network. This is a combinatorial optimization problem and we have been motivated to use evolutionary approach to solve the problem.

원격 건강정보 모니터링 시스템을 위한 개선된 익명인증 기법 (An Improved Anonymous Authentication Scheme for Remote Health Monitoring System)

  • 박영호;노시완;이경현
    • 정보보호학회논문지
    • /
    • 제26권6호
    • /
    • pp.1551-1560
    • /
    • 2016
  • 스마트 헬스케어 기술의 발전과 웨어러블 디바이스의 증가로 인해 최근 WBN을 활용한 원격지 건강정보 모니터링 시스템이 제시되고 있다. 그러나 네트워크를 통해 전송되는 환자 개인의 건강기록에 대한 보호가 필요하며, 허가되지 않은 정보의 수집으로 인한 환자의 개인 식별정보나 건강기록이 노출되지 않도록 환자의 프라이버시도 반드시 보호되어야 한다. 이를 위해 Yang 등은 암호기술의 키 격리 기법을 적용한 원격 건강정보 모니터링 시스템의 익명 인증기법을 제안하였다. 그러나 이들의 기법은 키 격리 기법을 잘못 구성하여 다른 사용자의 개인키 위조 가능성 문제를 가지고 있으며, 헬스케어 서비스 제공자에게 사용자의 식별정보가 그대로 노출되어 익명성을 보장하지 못한다. 이에 본 논문은 Yang 등의 기법의 보안상의 문제점을 지적하고, 이를 개선한 건강정보 모니터링 시스템의 익명인증 기법을 제안한다.