• Title/Summary/Keyword: wireless environmental monitoring

Search Result 222, Processing Time 0.025 seconds

Design of Energy Prediction Model for Solar-Powered Wireless Sensor Nodes (태양 에너지 기반 무선 센서 노드를 위한 에너지 예측 모델의 설계)

  • Nayantai, Bulganbat;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.858-861
    • /
    • 2012
  • Distributed sensor nodes for environmental monitoring, have a problem of difficult and expensive battery change. In this case, renewable energy such as solar energy is helpful. We can use high-quality solar energy everyday. In this paper, we model photovoltaic energy prediction model for sensor nodes, which includes charge and discharge characteristics as well as seasonal and monthly characteristics of the solar energy. Our model is useful to predict energy consumption of solar-powered sensor nodes realistically using real world use data of the nodes.

  • PDF

Food Security through Smart Agriculture and the Internet of Things

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.33-42
    • /
    • 2022
  • One of the most pressing socioeconomic problems confronting humanity on a worldwide scale is food security, particularly in light of the expanding population and declining land productivity. These causes have increased the number of people in the world who are at risk of starving and have caused the natural ecosystems to degrade at previously unheard-of speeds. Happily, the Internet of Things (IoT) development provides a glimmer of light for those worried about food security through smart agriculture-a development that is particularly relevant to automating food production operations in order to reduce labor expenses. When compared to conventional farming techniques, smart agriculture has the benefit of maximizing resource use through precise chemical input application and regulation of environmental factors like temperature and humidity. Farmers may make data-driven choices about the possibility of insect invasion, natural disasters, anticipated yields, and even prospective market shifts with the use of smart farming tools. The technical foundation of smart agriculture serves as a potential response to worries about food security. It is made up of wireless sensor networks and integrated cloud computing modules inside IoT.

Development of Smart Kiosk for Controlling and Monitoring (제어 및 모니터링을 위한 스마트 키오스크 개발)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.160-164
    • /
    • 2022
  • In this paper, through the development of a smart panel (LCD kiosk) controller, contents to develop a system that can be operate in a desired environment by operating the window control and ventilation facilities according to the automatic controller operation based on the set values such as temperature, humidity, sunlight, and rainfall. In particular, the MQTT protocol-based sensor module can be directly manufactured and applied at any time based on various communication and power sources such as wireless, wired, and PLC (power line communication) to obtain the desired data, as well as fire, power failure, and intrusion in the house. It is also a system that enables operation and monitoring from a remote location based on the cloud environment by connecting sensors. Kiosks are currently being used in many places, and the demand for them is on the rise, and an active influx of young people can be expected through environmental improvement. It is expected to increase interest and understanding for improvement.

Implementation of Monitoring System for Smart Factory (스마트 팩토리를 위한 모니터링 시스템 구현)

  • Yoon, Jae-Hyeon;Jung, Jong-Mun;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.485-489
    • /
    • 2018
  • For the construction of smart factory that are part of the Fourth Industrial Revolution, data from the production environments and production machines should be collected, analyzed, and feedback should be given to predict when failures take place or parts should be replaced. For this purpose, a system that monitors the production environments and the status of the production machines are required. In this paper, the monitoring system for mobile devices and PC is implemented by collecting environmental data from production sites and sensor data of production machine using LoRa, a low-power wireless communication technology. On the mobile devices, production environments and vibration data can be displayed in real time. In PC monitoring program, sensor data can be displayed graphically to check standard deviation and data variation. The implemented system is used to collect data such as temperature, humidity, and atmospheric pressure of the production environment, and vibration data of production machines.

Monitoring System for the Elderly Living Alone Using the RaspberryPi Sensor (라즈베리파이 센서를 활용한 독거노인 모니터링 시스템)

  • Lee, Sung-Hoon;Lee, June-Yeop;Kim, Jung-Sook
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1661-1669
    • /
    • 2017
  • In 2017, Korea has reached 1.3 million elderly people living alone. The government is promoting the basic care service for the elderly by using care workers to check the security of the elderly living alone. However, due to lack of service personnel and service usage rate of elderly care workers, it is difficult to manage. To improve these environmental constraints, this study attempted to construct a monitoring system for elderly people living alone by using sensors such as temperature, humidity, motion detection, and gas leak detection. The sensor periodically collects the current status data of the elderly and sends them to the server, creates a real time graph based on the data, and monitors it through the web. In the monitoring process, when the sensor is out of the range of the specified value, it sends a warning text message to the guardian to inform the current situation, and is designed and implemented so as to support the safety life of the elderly living alone.

Security and Privacy in Ubiquitous Sensor Networks

  • Perez, Alfredo J.;Zeadally, Sherali;Jabeur, Nafaa
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.286-308
    • /
    • 2018
  • The availability of powerful and sensor-enabled mobile and Internet-connected devices have enabled the advent of the ubiquitous sensor network (USN) paradigm. USN provides various types of solutions to the general public in multiple sectors, including environmental monitoring, entertainment, transportation, security, and healthcare. Here, we explore and compare the features of wireless sensor networks and USN. Based on our extensive study, we classify the security- and privacy-related challenges of USNs. We identify and discuss solutions available to address these challenges. Finally, we briefly discuss open challenges for designing more secure and privacy-preserving approaches in next-generation USNs.

A Software Update Method Using Clustering WSNs (클러스터링을 이용한 SW 업데이트 방법)

  • Jeong, Hyeyeong;Ahn, Byoungchul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.245-251
    • /
    • 2014
  • Wireless Sensor Networks(WSNs) are applied to many monitoring applications. Present sensor nodes can perform many functions at the same time and contain complex software. During the lifetime of sensor nodes, they are required to reprogram their software because of their new functions, software, software bug fixes. The nodes are inaccessible physically or it is very difficult to upgrade their software by one by one. To upgrade the software of sensor nodes in WSNs remotely, this paper presents an energy efficient method by selecting an optimal relay node. The CHR(Cluster Head Relay) method is compared with SPIN and RANDOM method. Three methods are simulated in NS-2 with the same environmental parameters. Simulation results show that CHR shows faster update time and less power consumption compared with other two methods.

Intelligent Data Reduction Algorithm for Sensor Network based Fault Diagnostic System

  • Youk, Yui-Su;Kim, Sung-Ho;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.301-308
    • /
    • 2009
  • In the modern life, machines are used for various areas in industries as the advance of science and industrial development has proceeded. In many machines, the rotating machines play an important role in many processes. Therefore, the development of fault diagnosis and monitoring system for rotating machines is required. An ubiquitous sensor network (USN) is a combination of the key computer science and engineering area technology including the wireless network, embedded system hardware and software, communication, real-time system, etc. It collects environmental information to realize a variety of functions. In this work, a data reduction algorithm for USN based remote fault diagnostic system which can be easily applied to previously built factories is proposed. To verify the feasibility of the proposed scheme, some simulations and experiments are executed.

Relay Node Selection Scheme for EH-WSN Routing considering Data Urgency (EH-WSN 라우팅에서 데이터의 긴급성을 고려한 중계노드 선택기법)

  • Kang, Min-Seung;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1113-1116
    • /
    • 2020
  • In the EH-WSN(Energy Harvesting Wireless Sensor Network), the routing protocol must consider the power condition of nodes such as residual power and energy harvesting rate. Many EH-WSN studies have emphasized the power aspect and make the urgency of sensed data less important. However, in applications such as environmental monitoring, stability and latency become more important issues than power efficiency for urgent data. In this paper, we designed a routing protocol that can set path according to data urgency. To this end, relay nodes are determined considering the urgency of date. Nodes with poor power do not participate in routing when normal data is generated, so that urgent data can be transmitted reliably with low latency. The performance of the proposed routing protocol is analyzed by computer simulation.

A Beeline Routing Protocol for Heterogeneous WSN for IoT-Based Environmental Monitoring

  • Sahitya, G.;Balaji, N.;Naidu, C.D.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.67-72
    • /
    • 2022
  • A wireless sensor network (WSN), with its constrained sensor node energy supply, needs an energy-efficient routing technique that maximises overall system performance. When rumours are routed using a random-walk routing algorithm, which is not highly scalable, spiral pathways may appear. Because humans think a straight line is the quickest route between two sites and two straight lines in a plane are likely to intersect, straight-line routing (SLR) constructs a straight path without the aid of geographic information. This protocol was developed for WSNs. As a result, sensor nodes in WSNs use less energy when using SLR. Using comprehensive simulation data, we show that our upgraded SLR systems outperform rumour routing in terms of performance and energy conservation.