• Title/Summary/Keyword: wireless body area networks (WBANs)

Search Result 27, Processing Time 0.022 seconds

A QoS-aware Adaptive Coloring Scheduling Algorithm for Co-located WBANs

  • Wang, Jingxian;Sun, Yongmei;Luo, Shuyun;Ji, Yuefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5800-5818
    • /
    • 2018
  • Interference may occur when several co-located wireless body area networks (WBANs) share the same channel simultaneously, which is compressed by resource scheduling generally. In this paper, a QoS-aware Adaptive Coloring (QAC) scheduling algorithm is proposed, which contains two components: interference sets determination and time slots assignment. The highlight of QAC is to determine the interference graph based on the relay scheme and adapted to the network QoS by multi-coloring approach. However, the frequent resource assignment brings in extra energy consumption and packet loss. Thus we come up with a launch condition for the QAC scheduling algorithm, that is if the interference duration is longer than a threshold predetermined, time slots rescheduling is activated. Furthermore, based on the relative distance and moving speed between WBANs, a prediction model for interference duration is proposed. The simulation results show that compared with the state-of-the-art approaches, the QAC scheduling algorithm has better performance in terms of network capacity, average delay and resource utility.

Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model (무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석)

  • Wang, Song;Chun, Seung-Man;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.867-875
    • /
    • 2009
  • The reliability of wireless body area networks is an important research issue since it may jeopardize the vital human life, unless managed properly. In this article, a new modeling and analysis of node misbehaviors in wireless body area networks is presented, in the presence of multi-type failures. First, the nodes are classified into types in accordance with routing capability. Then, the node behavior in the presence of failures such as energy exhaustion and/or malicious attacks has been modeled using a novel Semi-Markov process. The proposed model is very useful in analyzing reliability of WBANs in the presence of multi-type failures.

A Hierarchical MAC Protocol for QoS Support in Wireless Wearable Computer Systems

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • A recent major development in computer technology is the advent of wearable computer systems. Wearable computer systems employ a wireless universal serial bus (WUSB), which refers to a combination of USB with the WiMedia wireless technical specifications. In this study, we focus on an integrated system of WUSB over wireless body area networks (WBANs) for wireless wearable computer systems. However, current WBAN MACs do not have well-defined quality of service (QoS) mapping and resource allocation mechanisms to support multimedia streams with the requested QoS parameters. To solve this problem, we propose a novel QoS-aware time slot allocation method. The proposed method provides fair and adaptive QoS provisioning to isochronous streams according to current traffic loads and their requested QoS parameters by executing a QoS satisfaction algorithm at the WUSB/WBAN host. The simulation results show that the proposed method improves the efficiency of time slot utilization while maximizing QoS provisioning.

Proposal of a hierarchical topology and spatial reuse superframe for enhancing throughput of a cluster-based WBAN

  • Hiep, Pham Thanh;Thang, Nguyen Nhu;Sun, Guanghao;Hoang, Nguyen Huy
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.648-657
    • /
    • 2019
  • A cluster topology was proposed with the assumption of zero noise to improve the performance of wireless body area networks (WBANs). However, in WBANs, the transmission power should be reduced as low as possible to avoid the effect of electromagnetic waves on the human body and to extend the lifetime of a battery. Therefore, in this work, we consider a bit error rate for a cluster-based WBAN and analyze the performance of the system while the transmission of sensors and cluster headers (CHs) is controlled. Moreover, a hierarchical topology is proposed for the cluster-based WBAN to further improve the throughput of the system; this proposed system is called as the hierarchical cluster WBAN. The hierarchical cluster WBAN is combined with a transmission control scheme, that is, complete control, spatial reuse superframe, to increase the throughput. The proposed system is analyzed and evaluated based on several factors of the system model, such as signal-to-noise ratio, number of clusters, and number of sensors. The calculation result indicates that the proposed hierarchical cluster WBAN outperforms the cluster-based WBAN in all analyzed scenarios.

A Life-Critical Data Transmission Scheme for Wireless Body Area Networks (무선 인체 통신 네트워크를 위한 응급데이터 전송기법)

  • Choi, Won-Suk;Cho, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1329-1335
    • /
    • 2009
  • In this paper, we propose a new medium access control protocol referred to as DCTW (Dual Channel Transmission Scheme for wireless body area networks). Wireless body area networks (WBANs) requires prioritization mechanism for life-critical data to transmit the data as early as possible. The proposed DCTW exploits a narrow band for transmitting life-critical data while it uses a broadband channel to transmit normal data. Since the narrow band is dedicated to life-critical data, the DCTW can effectively reduce the delay of life-critical data transmission. Through extensive simulation, we show the DCTW outperforms other existing schemes.

TF-CPABE: An efficient and secure data communication with policy updating in wireless body area networks

  • Chandrasekaran, Balaji;Balakrishnan, Ramadoss;Nogami, Yasuyuki
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.465-472
    • /
    • 2019
  • The major challenge in wireless body area networks (WBAN) is setting up a protected communication between data consumers and a body area network controller while meeting the security and privacy requirements. This paper proposes efficient and secure data communication in WBANs using a Twofish symmetric algorithm and ciphertext-policy attribute-based encryption with constant size ciphertext; in addition, the proposed scheme incorporates policy updating to update access policies. To the best of the author's knowledge, policy updating in WBAN has not been studied in earlier works. The proposed scheme is evaluated in terms of message size, energy consumption, and computation cost, and the results are compared with those of existing schemes. The result shows that the proposed method can achieve higher efficiency than conventional methods.

QoS Provisioning in Wireless Body Area Networks: A Review on MAC Aspects

  • Thapa, Anup;Shin, Seok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1267-1285
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) deal with variety of healthcare services with diverse Quality of Service (QoS) requirements. However, QoS handling is a challenging problem in such networks. In general, QoS related problems can be addressed from different layers in the networking protocol suite. Design of an efficient QoS aware Medium Access Control (MAC) protocol can address this problem in MAC layer. This paper analyzes the QoS requirements of WBAN, identifies the requisites of QoS handling system, and outlines the trends that are being followed for its advancement with focus on QoS issues at MAC layer. We review some prior works, compare them, and analyze the current research concerned with problem of providing QoS in WBAN. We also explore some open issues and discuss them.

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

Novel UWB Transceiver for WBAN Networks: A Study on AWGN Channels

  • Zhao, Chengshi;Zhou, Zheng;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.11-21
    • /
    • 2010
  • A novel ultra-wideband (UWB) transceiver structure is presented to be used in wireless body area networks (WBANs). In the proposed structure, a data channel and a control channel are combined into a single transmission signal. In the signal, a modulation method mixing pulse position modulation and pulse amplitude modulation is proposed. A mathematical framework calculating the power spectrum density of the proposed pulse-based signal evaluates its coexistence with conventional radio systems. The transceiver structure is discussed, and the receiving performance is investigated in the additive white Gaussian noise channel. It is demonstrated that the proposed scheme is easier to match to the UWB emission mask than conventional UWB systems. The proposed scheme achieves the data rate requirement of WBAN; the logical control channel achieves better receiving performance than the logical data channel, which is useful for controlling and maintaining networks. The proposed scheme is also easy to implement.

Performance Evaluation of SDN Controllers: RYU and POX for WBAN-based Healthcare Applications

  • Lama Alfaify;Nujud Alnajem;Haya Alanzi;Rawan Almutiri;Areej Alotaibi;Nourah Alhazri;Awatif Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.219-230
    • /
    • 2023
  • Wireless Body Area Networks (WBANs) have made it easier for healthcare workers and patients to monitor patients' status continuously in real time. WBANs have complex and diverse network structures; thus, management and control can be challenging. Therefore, considering emerging Software-defined networks (SDN) with WBANs is a promising technology since SDN implements a new network management and design approach. The SDN concept is used in this study to create more adaptable and dynamic network architectures for WBANs. The study focuses on comparing the performance of two SDN controllers, POX and Ryu, using Mininet, an open-source simulation tool, to construct network topologies. The performance of the controllers is evaluated based on bandwidth, throughput, and round-trip time metrics for networks using an OpenFlow switch with sixteen nodes and a controller for each topology. The study finds that the choice of network controller can significantly impact network performance and suggests that monitoring network performance indicators is crucial for optimizing network performance. The project provides valuable insights into the performance of SDN-based WBANs using POX and Ryu controllers and highlights the importance of selecting the appropriate network controller for a given network architecture.