• Title/Summary/Keyword: wireless application

Search Result 1,722, Processing Time 0.028 seconds

Analysis and Application of Compact Planar Multi-Loop Self-Resonant Coil of High Quality Factor with Coaxial Cross Section (고품질 계수를 갖는 소형 평판형 동축 단면 다중 루프 자기 공진 코일 해석 및 응용)

  • Son, Hyeon-Chang;Kim, Jinwook;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.466-473
    • /
    • 2013
  • In this paper, a compact planar multi-loop self-resonant coil of high quality factor with a coaxial cross section is proposed for effective wireless charging. The proposed coil has high Q-factor and a resonant frequency of a coil can be easily controlled by adjusting distributed capacitance. For designing the coil, a self-inductance and a distributed capacitance are calculated theoretically. The self-inductance is calculated from the sum of the mutual energies between small circular loops that are made by dividing the cross section of the coil. To verify its properties and calculation results, the self-resonant coils are fabricated by using a coaxial cable with characteristic impedance of $50{\Omega}$. The measured frequencies are very consistent with the calculated ones. In addition, the resonant frequency can be adjusted slightly by the tuning parameter ${\gamma}$. The resonant coils are applied to a tablet PC, the Q-factors of the Tx and Rx resonant coils are 282 and 135, respectively. As a result of measurement when height between the two resonant coils is 4.4 cm, the power transfer efficiency is more than 80 % within a radius of 5 cm.

Radix-4 Trellis Parallel Architecture and Trace Back Viterbi Decoder with Backward State Transition Control (Radix-4 트렐리스 병렬구조 및 역방향 상태천이의 제어에 의한 역추적 비터비 디코더)

  • 정차근
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.397-409
    • /
    • 2003
  • This paper describes an implementation of radix-4 trellis parallel architecture and backward state transition control trace back Viterbi decoder, and presents the application results to high speed wireless LAN. The radix-4 parallelized architecture Vietrbi decoder can not only improve the throughput with simple structure, but also have small processing delay time and overhead circuit compared to M-step trellis architecture one. Based on these features, this paper addresses a novel Viterbi decoder which is composed of branch metric computation, architecture of ACS and trace back decoding by sequential control of backward state transition for the implementation of radix-4 trellis parallelized structure. With the proposed architecture, the decoding of variable code rate due to puncturing the base code can easily be implemented by the unified Viterbi decoder. Moreover, any additional circuit and/or peripheral control logic are not required in the proposed decoder architecture. The trace back decoding scheme with backward state transition control can carry out the sequential decoding according to ACS cycle clock without additional circuit for survivor memory control. In order to evaluate the usefulness, the proposed method is applied to channel CODEC of the IEEE 802.11a high speed wireless LAN, and HDL coding simulation results are presented.

Development of Real-time Underground Utilities Management System using Real-time Kinematics Systems and 3D Game Engines (RTK 시스템과 3차원 게임엔진을 이용한 실시간 지하 매설물 관리 시스템 개발)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.51-58
    • /
    • 2011
  • This paper describes a development of system that enables the user to manage and display from 3D viewer after at real-time saves attribute informations in DBMS using RTK systems and 3D game engines. The 3-dimensional game engines for this system will be input a attribute values of underground utilities which is measured from RTK systems with wireless network. This system which sees does to make be a possibility of managing creation, elimination, modification for the underground utilities from 3-dimensional viewer. The coordinates about the underground utilities measures with GPS. The base reference point for RTK systems uses one in reference points which are measured in existing. GPS coordinates revised a reference point in standard. The 3-dimensional game engines are having the function which manages the underground utilities with 3-dimensions. The function is the same as wireless network of RTK systems, 3-dimensional display for terrain and underground utilities, input and registration for attribute of underground utilities, etc. The system which sees will be able to prevent the various accident which is caused by in the spatial location coordinate which underground utilities is inaccurate. And the system which sees is accurate is a possibility of managing and the application possibility is high very. Finally, this system could be applied very usefully from the point of view which starts a new town development.

An Admission Control Mechanism to guarantee QoS of Streaming Service in WLAN (WLAN에서 스트리밍 서비스의 QoS를 보장하기 위한 승인 제어 기술)

  • Kang, Seok-Won;Lee, Hyun-Jin;Lee, Kyu-Hwan;Kim, Jae-Hyun;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.595-604
    • /
    • 2009
  • The HCCA reserves the channel resources based on the mean data rate in IEEE 802.11e. It may cause either the waste of channel resource or the increase of transmission delay at MAC layer if the frame size is rapidly varied when a compressed mode video codec such as MPEG video is used. To solve these problems, it is developed that the packet scheduler allocates the wireless resource adaptation by according to the packet size. However, it is difficult to perform the admission control because of the difficulty with calculating the available resources. In this paper, we propose a CAC mechanism to solve the problem that may not satisfy the QoS by increasing traffic load in case of using EDCA. Especially, the proposed CAC mechanism calculates the EB of TSs using the traffic information transmitted by the application layer and the number of average transmission according to the wireless channel environment, and then determines the admission of the TS based on the EB. According to the simulation results of the proposed CAC mechanism, it admitted the TSs under the loads which are satisfied within the delay bound. Therefore, the proposed mechanism guarantees QoS of streaming services effectively.

Performance Analysis of Mobility Support Protocols for IPv6 over Wireless LAN (IEEE 802.11 무선랜 환경에서의 이동성 지원 IPv6프로토콜의 성능분석)

  • Hwang Seung-Hee;Han Youn-Hee;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.391-403
    • /
    • 2005
  • Several nv6 mobility support protocols for mobile Internet services are proposed in IETP : Mobile Ipv6, Hierarchical Mobile Ipv6, and Fast Handovers over Mobile Ipv6. Recently, IEEE 802.11 network has also been widely deployed in public areas for mobile Internet services. In the near future, IPv6 mobility support over IEEE 802.11 network is expected to be a key function to actualize the All If-based mobile various services. For appropriate application of these protocols, the IPv6 mobility support protocols should be analyzed according to their characteristics in terms of signaling, handover latency, lost packets, and required buffer sire as well as the impact of lower layer such as IEEE 802.11 network. In this paper, we analyze the performance of the protocols over IEEE 802.11 network. We define a packet-level traffic model, a network system model, and a mobility model. From these models, we construct a framework for the performance analysis. We also make cost functions to formalize each protocol's performance. Lastly, we analyze the effect of varying parameters used to show diverse numerical results, and compare with each other. From the analysis results, it is concluded that each Protocol has contrary or contrastive advantages with other Protocols, so there is no protocol that holds a dominant position.

Design of Adaptive Security Framework based on Carousel for Cognitive Radio Network (인지무선네트워크를 위한 회전자 기반 적응형 보안프레임워크 설계)

  • Kim, Hyunsung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.165-172
    • /
    • 2013
  • Convergence is increasingly prevalent in the IT world which generally refers to the combination of two or more different technologies in a single device. Especially, the spectrum scarcity is becoming a big issue because there are exponential growth of broadcasting and communication systems in the spectrum demand. Cognitive radio (CR) is a convergence technology that is envisaged to solve the problems in wireless networks resulting from the limited available spectrum and the inefficiency in the spectrum usage by exploiting the existing wireless spectrum opportunistically. However, the very process of convergence is likely to expose significant security issues due to the merging of what have been separate services and technologies and also as a result of the introduction of new technologies. The main purpose of this research is focused on devising an adaptive security framework based on carousel for CR networks as a distinct telecommunication convergence application, which are still at the stage of being developed and standardized with the lack of security concerns. The framework uses a secure credential, named as carousel, initialized with the location related information from objects position, which is used to design security mechanisms for supporting privacy and various securities based on it. The proposed adaptive security framework could be used as a security building block for the CR network standards and various convergence applications.

Power efficiency research for application of IoT technology (사물인터넷 기술 적용을 위한 소비전력 효율화 연구)

  • Seo, Younghoon;Park, Eun-Cheol;Kang, Sunghwan;Hwang, Jae-Mun;Yun, Junghwan;Eom, Junyoung;Gwon, Hyeong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.669-672
    • /
    • 2015
  • Recent Internet of Things (IoT, Internet of Things) that can be applied to various fields as the development of technology has been developed a lot of service and has been developed with the service also for crop management. To manage the essential elements of soil moisture in the crop growth but existing a direct person measuring the fluid point to carry the measuring instrument, if you take advantage of the WPAN (Wireless Personal Area Network) in this paper to manage sensor data, a fixed 3 points (30, 60, 90 cm) and can be managed can be scientifically analyzed the state of growth of the crop. Open field environment is utilized as it is less disturbance of the interference and the frequency of the radio frequency signal of the structure provides a relatively comfortable environment. Therefore, WPAN building and data transmission scheme of the minimum cost is to be developed. In addition, the operation to enter low power mode, the algorithm is necessary because a lot of restrictions on the power supply applied to the sensor nodes and the gateway is constructed in the open field. In the experiment, verifying the effectiveness by using a network configuration of each of the sensor nodes and the gateway, and provides a method for time synchronization of the operation and a low power mode. The study protocol for the RF communication with the LoRa and to enhance communication efficiency is needed in the future.

  • PDF

A Study of a Module of Wrist Direction Recognition using EMG Signals (근전도를 이용한 손목방향인식 모듈에 관한 연구)

  • Lee, C.H.;Kang, S.I.;Bae, S.H.;Kwon, J.W.;LEE, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • As it is changing into aging society, rehabilitation, welfare and sports industry markets are being expanded fast. Especially, the field of vital signals interface to control welfare instruments like wheelchair, rehabilitation ones like an artificial arm and leg and general electronic ones is a new technology field in the future. Also, this technology can help not only the handicapped, the old and the weak and the rehabilitation patients but also the general public in various application field. The commercial bio-signal measurement instruments and interface systems are complicated, expensive and large-scaled. So, there are a lot of limitations for using in real life with ease. this thesis proposes a wireless transmission interface system that uses EMG(electromyogram) signals and a control module to manipulate hardware systems with portable size. We have designed a hardware module that receives the EMG signals occurring at the time of wrist movement and eliminated noises with filter and amplified the signals effectively. DSP(Digital Signal Processor) chip of TMS320F2808 which was supplied from TI company was used for converting into digital signals from measured EMG signals and digital filtering. We also have used PCA(Principal Component Analysis) technique and classified into four motions which have right, left, up and down direction. This data was transmitted by wireless module in order to display at PC monitor. As a result, the developed system obtains recognition success ratio above 85% for four different motions. If the recognition ratio will be increased with more experiments. this implemented system using EMG wrist direction signals could be used to control various hardware systems.

  • PDF

Implementation of Efficient Mobile Monitoring System of the GreenHouse Environment Data (온실 환경 데이터의 효과적인 모바일 모니터링 시스템 구현)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.572-579
    • /
    • 2009
  • A monitoring system needs many parameters to increase devices for monitoring data and to support various services. In particular, monitoring the status of a device in a wireless mobile environment has a difficulty in displaying multi data in a limited screen size, and transfer of the status data of a device into a network is largely related with network traffic. The research aims at designing a control board that collects data in order to effectively manage a greenhouse environment system. Also, the research tries to appropriately operate devices, environment data monitoring, and the control of each device by realizing a multiplexed interface based on a web. Thus, in the case in which a distributed client was a computer, monitoring and control were obtained with a web browser through the Lab VIEW web server of a server or local control module in order to effectively monitor and control according to the status of a user. In the case in which a client was a PDA, application of a wireless mobile considering the scale and data processing capacity of a displayer was connected. As a result of the research, we could confirm a satisfactory outcome from the viewpoint of a human-centered design by supplying adaptability and mobility according to the environment of a user.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.