• Title/Summary/Keyword: wire tension

Search Result 247, Processing Time 0.028 seconds

Technique of Tension Length Calculation for 350km/h High Speed Catenary System (최고운행속도 350km/h급 전차선로 장력구간길이 계산 기법)

  • Chang, Sang-Hoon;Lee, Ki-Won;Kwon, Sam-Young;Park, Jae-Woong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.932-939
    • /
    • 2011
  • This paper deal with technique of tension length calculation for 350km/h high speed catenary system. Tension length affects in facility investment. Possibility of overlap increasing a tension length and the equipment investor decreases in order to decrease. Considers the parameter which specifies and the grudge which is possible long the fact that decides a tension length is the aim which is important plans overhead contact line. The element which decides a tension length with next following; (i) Operating range of tension device, (ii) Change of the horizontal tension which affects possibility of the effect which operates to the line and span, (iii) Tension of wire material the tensile force which is relation, (iv) Wire thermal expantion which relates with a standard temperature, (v) Curve radius, (vi) Wind velocity, (vii) Thermal range of overhead contact wire and mechanical design of tension mechanism etc.

  • PDF

Tension Control of a Wire Cut Discharge Machine Using ER Brake (ER 브레이크를 이용한 와이어 방전가공기의 장력제어)

  • Kim Key-Sun;Cho Myung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.24-29
    • /
    • 2004
  • This paper presents the tension control of a wire-cut discharge machine using electrorheological(E,R) fluid based brake system. On the basis of the tension level required in the machine, an appropriate size of the ER brake which features design simplicity, fast response and salient controllability is designed. Considering the Bingham property of ER fluid and actuator response time, the governing equation of the ER brake is derived. And a tension propagation of wire electrode is modeled via frequency response. The tension control performance of the discharge machine is simulated by using a robust sliding mode controller.

Straightening Process of Micro Wires (마이크로 와이어의 직선화 처리에 관한 연구)

  • Kim, Woong-Kyum;Hong, Nam-Pyo;Kim, Byeong-Hee;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1148-1153
    • /
    • 2006
  • This paper deals with the effect of the direct heating method(DHM) for straightening the micro wire. Straightened micro wires have been widely used in the fields of the medicine and the semi-conductor. We have developed a micro wire straightening system by using the direct wire heating method. To controling the tension of the micro wire during the heating and straightening process, a precision tension sensor was set up. In order to avoid the surface oxidation during the heating process, the argon inert gas was supplied to the vicinity of the wire. And, this paper shows the correlation between the tension and the current when arson gas supplied to the tungsten wire. Through several experiments, the optimal tension and current were found. Also, higher straightness $({\approx}1{\mu}m/1000{\mu}m)$ and roundness$(<{\Phi}{\pm}2{\mu}m/100{\mu}m)$ founded when $500{\mu}600gf$ tension and 1.5 ampere.

Development of Automatic Tension Control and Fixing Device for An Automatic Manufacturing Process of A Vibrating Wire Sensor (진동현 센서 제작 공정 자동화를 위한 자동 장력 조절 및 접합 장치의 개발)

  • Go, Seok-Jo;Park, Jang-Sik;Yu, Ki-Ho;Kim, Seong-Won;Lee, Seung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Constructing structures is the basic process requiring establishment of grounds. However, cracks due to sinking and distorting ground influence directly on the safety of structural health. Vibrating wire sensor measures the crack of structure by detecting the differences of wire tensions in analogue manner. In the previous production process, the tension is adjusted manually measuring the frequency of vibrating wire. Therefore, the accuracy of a sensor was depends on the skill level of labor. In this study, the automatic tension control and fixing devise is developed to enhance both accuracy and productivity. To evaluate the performance of the vibrating wire sensor, the nonlinearity of sensor is measured. The automatic tension control and fixing devise enhances the nonlinearity of the sensor from 0.398 to 0.056%. Therefore, the accuracy of the newly proposed method is successful.

Tension/Movement Control of Working Robot and Dynamic Model of the Stringing Wire Cable (가설 와이어 케이블 동적모델과 작업로봇의 장력/이동 제어)

  • Hong, Jeng-Pyo;Kim, Yoon-Sik;Lee, Sung-Geun;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • In this paper, an approach to designing controllers for the tension/movement control of working robot to install a stringing wire cable is presented. To design a controller, when the robot moves a certain distance maintaining constant tension, the dynamic model of a stringing wire cable which considers effects of weights according to changing lengths is presented. Also the tension at startup of the working robot is studied by numerical analysis which is based on the equation of the dynamic wire model. From the dynamic model for a stringing wire cable, working robot for tension/movement control is suggested and designed a feedforward controller with a accelerator gain to suppress a mutual interference of the both tasks of tension/movement control. Depending on the operating conditions of the working robot, the effectiveness of the suggested system has been verified by the simulation and experimental results.

Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF

An Introduction and Economical Efficiency analysis of Spring Tension Balancer (스프링식 자동장력 조정장치의 소개 및 경제성 분석)

  • Yoon Yong-Han;Yim Geum-Kwang;Shin Seung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.856-861
    • /
    • 2005
  • This paper presents an introduction and economical efficiency analysis of spring tension balancer in trolly wire system. In the overhead trolly wire systems, one of the most things is tension balancer. Because it can be automatically adjusted tension for expansion and contraction of overhead catenary system. In this paper, we introduced spring tension balancer and analyzed economical efficiency of it.

Nonlinear Vibration Analysis of Thin Perforated Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.639-647
    • /
    • 2002
  • The nonlinear vibration of the thin perforated plate is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the tension plate is obtained from dynamic condensation for the mass and stiffness matrices. Tension wire is modeled using the lumped parameter method to effectively describe its contact interactions with the plate. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. From the evaluation of the computational accuracy and computation time for the deduced impact stiffness and damping coefficient, we determined proper values for the simulation works, accounting for the computational accuracy as well as the computational efficiency. Finally we discussed the results of nonlinear nitration analysis for variations of their design parameters.

Lowering Simulation using Floating Crane in Waves (파랑 중 해상 크레인의 하강 작업 수치 시뮬레이션)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Byoung-Wan;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • A coupled analysis of a floating crane barge with a crane wire and hanging structure is carried out in thetime domain. The motion analysis of the crane barge is based on the floating multi-body dynamics, and thecrane wire is modeled as a simple spring tension. The hanging structure is assumed to be a rigid body with 3 degree-of-freedom translational motion. In this study, numerical simulations were conducted at three different stages. First, the developed code was validated by comparing the time-domain motion response of a crane barge with the frequency-domain results. Then, a coupled analysis of a crane barge and simple structure hanging by the crane wire was performed using the present scheme. The motion response and wire tension from the present calculations are compared with the results of OrcaFlex. The agreement between the two sets of results isfairly good. Last, lowering simulations in regular and irregular waves were conducted considering buoyancy changes in the hanging structure. The effects of the wave conditions, structure's weight, wire length, and lowering speed on the wire tension are considered.

Machining Characteristics of Wire EDM Using ER Brake System (ER 제동장치를 적용한 와이어 컷 방전의 가공 특성)

  • 김기선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.171-178
    • /
    • 2004
  • This paper presents vibration characteristics of a wire cut discharge machine in which an electro-rheological brake actuator is used to control the wire tension. The ER brake actuator has several advantages including design simplicity, fast response time and real-time controllability. On the basis of the tension level required in the machine an appropriate size of the ER brake actuator is devised. The ER brake actuator is then incorporated with the machine and the field-dependent wire tension is experimentally evaluated. The straightness of the workpiece is also empirically investigated by changing the intensity of the electric field.