• Title/Summary/Keyword: winter survival

Search Result 154, Processing Time 0.019 seconds

Domestic Distribution and Temperature-dependent Development on Pseudococcus longispinus and P. orchidicola (Hemiptera: Pseudococcidae) in Korea (긴꼬리가루깍지벌레와 붉은몸긴꼬리가루깍지벌레의 국내 분포 및 온도별 발육특성)

  • Jeong, Dae-Hoon;Kyung, Ye Jin;Kim, Hyunkyung;Koo, Hyun-Na;Cho, Soowon;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.57 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • We surveyed 281 sites of tropical plants and 666 sites of fruit plants for three years (2015~2017) on Pseudococcus longispinus and Pseudococcus orchidicola which have not been surveyed domestically. In tropical plants, P. longispinus were found at 34 sites, while P. orchidicola were found at 87 sites. However, both species were not found in fruit plants. The developmental characteristics of P. longispinus and P. orchidicola were investigated under various temperatures. The female nymph of P. longispinus did not develop at $14^{\circ}C$ and the developmental period was the longest at $16^{\circ}C$ for 361.4 days and the shortest at $32^{\circ}C$ for 39.0 days. The longevity of female adult of P. longispinus was the shortest at $28^{\circ}C$ as 71.7 days. The number of offspring was highest at 177.7 at $32^{\circ}C$. The female nymph of P. orchidicola did not develop at $12^{\circ}C$. However, the developmental period was the longest at $14^{\circ}C$ for 184.9 days and the shortest at $28^{\circ}C$ for 21.5 days. The longevity of female adult of P. orchidicola was the shortest at 51.5 days at $28^{\circ}C$. The number of offspring was highest at 143.8 at $28^{\circ}C$. The net reproductive rate ($R_0$) and intrinsic rate of increase ($r_m$) of P. longispinus were 162.3 and 0.127 at $32^{\circ}C$, respectively. The $R_0$ and $r_m$ of P. orchidicola were 98.3 and 0.139 at $28^{\circ}C$, respectively. These results suggest that the optimum temperature of P. longispinus and P. orchidicola was $32^{\circ}C$ and $28^{\circ}C$, respectively. Therefore, we guess that they can never be able to survive the winter of Korea.

Distribution of Weeds with Different Surface Management Systems of Greenhouse Soil in Gyeongnam Province (경남지역 시설원예작물 재배지 및 표토관리별 잡초발생 양상)

  • Hwang, Jae-Bok;Yun, Eul-Soo;Park, Chang-Young;Park, Sung-Tae;Nam, Min-Hee
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • Weed control is of fundamental importance when planting horticultural crops, particularly during the establishment phase. Weeds compete for nutrients, water and light, and can severely threaten the survival and early growth of newly planted crops. Failure to control weeds represents one of the single most important factors leading to crop loss. Knowledge on the existence of the diversity of weed species in greenhouses is of our main concern in this study in order to develop a most efficient and effective weed control strategies. Sixty-two greenhouses were surveyed in 3 cities and counties of Gyeongnam area in March to October 2009 to investigate the feature of weed occurrence in polyvinyl chloride (PVC) after harvesting of the main crops. Forty-one weed species were identified and classified to 18 families which were composed of 14 annual weeds, 18 summer annual weeds and 9 perennial weeds. On the other hand, broadleaf, grasses and sedges recorded with 30, 7 and 4 weed species, respectively. Asteraceae was the most dominant weed species (9 species) noted followed by Poaceae (7 species), Cyperaceae (4 species), Caryophyllaceae and Brassicaceae (3 species respectively) and other families have 1~2 species. The dominant weed species occurred in the greenhouse based on the summed dominance ratio. These weeds were Digitaria sanguinalis, Cyperus iria, Portulaca oleracea, Rorippa islandica, Mazus japonicas, Cardamine flexousa, and Eclipta prostrata and others. Weed occurrence in the greenhouse after horticultural crops consisted of summer annuals (4 species), winter annuals (3 species), and perennial annuals (1 specie). The dominant species occurred in tilled soil based on summed dominance ratio of weeds were Cardamine flexousa (88.1%), Eclipta prostrate (57.4%) and Portulaca oleracea (55.2%). Comparison of weed occurrence was thoroughly surveyed also in which field without PVC, weed species were Portulaca oleracea (55.2), Eclipta prostrata (57.9%) and Trigonotis peduncularis (25.1%) and field with PVC, the identified weeds were Portulaca oleracea (98.75), Trigonotis peduncularis (49.1%), and Eclipta prostrata (36.8%).

Cold Tolerance of Ground Cover Plants for Use as Green Roofs and Walls (옥상 및 벽면녹화용 지피식물의 내한성 비교)

  • Ryu, Ju Hyun;Lee, Hyo Beom;Kim, Cheol Min;Jung, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.590-599
    • /
    • 2014
  • This study was conducted to compare the cold tolerance of seven ground cover species, Orostachys japonica, Sedum oryzifolium, S. kamtschaticum 'SG1', S. reflexum, S. rupestre 'Blue Spruce', S. spurium 'Green Mental', and S. takesimense, which have been used for green roof and wall systems in Korea. Plants were grown in 10-cm pots and 1 g of tissues at stem-end and crown of each species were kept under either light or dark condition, respectively. For cold tolerance tests, plants were initially left at $4^{\circ}C$ and linearly cooled to 0, -4, -8, -12, -16, and $-20^{\circ}C$ at $-2^{\circ}C{\cdot}h^{-1}$ rate. Low temperature injury and regrowth rates were visually evaluated and assessed by image analysis, respectively. The lethal temperature ($LT_{50}$) of plant species was determined using electrolyte leakage measurements. S. reflexum was the most cold tolerant, showing the most survival at $-16^{\circ}C$, whereas S. oryzifolium and S. takesimense showed low temperature injury at $-8^{\circ}C$. Similar results were found with electrolyte leakage measurements at the stem end. For each species, the crown (Mean $LT_{50}:\;-12.15^{\circ}C$) was more cold tolerant than the stem end (Mean $LT_{50}:\;-10.47^{\circ}C$). In conclusion, S. reflexum and S. rupestre 'Blue Spruce' are recommended for planting in the central region of Korea during late fall and early winter, as they were more cold tolerant and showed more vigorous regrowth than the other tested plant species.

Growth of the Scallop, Patinopecten yessoensis in Suspended Culture in the East Coast of Korea (동해안 참가리비, Patinopecten yessoensis의 성장)

  • Park, Young-Je;Rho, Sum;Lee, Chae-Sung
    • Journal of Aquaculture
    • /
    • v.14 no.3
    • /
    • pp.181-195
    • /
    • 2001
  • To stabilize the lantern cage culture system of Patinopecten yessoensis(Jay) in the eastern coast of Korean peninsula, optimum conditions such as time of transplantation, rearing density and depth, and time of harvest were identified. During the period from January 1991 to December 1998, the water temperature ranged from 4.7 to 21.4$^{\circ}C$ at 15-30 m depth and 4.9 to 25.7$^{\circ}C$ at the surface; these thermal ranges were within the optimal ranges (5-23$^{\circ}C$) prevailing at 15-30 m depth at surface water. Annual thermal changes indicated that the prevailing temperature during the years 1993 and 1996 was near optimum, but higher during the years 1994, 1997 and 1998, when mass mortality and growth retardation occurred. Salinity (32.0- 34.4$\textperthousand$) and dissolved oxygen (4.14 -8.11 $\mu\textrm{g}$/l) at 15 m depth were well within the optimum ranges. The chlorophyll concentrations (0.06 - 2.73$\mu\textrm{g}$/l) indicated that the study area was oligotrophic, although mass mortality did occur, when chlorophyll concentrations were high, especially in summer. Hence water temperatures and chlorophyll concentration are major factors related to survival and growth of the scallop. In terms of the shell height maximum growth occurred during spring (March-May; 8 - l3$^{\circ}C$) and fall (October-December; 11-l7$^{\circ}C$) in the lantern cage culture. Slow growth was recorded during late winter January-february; less than 7$^{\circ}C$) and mid-summer (August- September; more than 18$^{\circ}C$). Daily growth of shell height and total weight were 0.02∼0.24 mm and -0.07∼0.90 g at the rearing density of 12 individuals per net. Optimal .earing density in the lantern cage (ø50${\times}$20 cm) was 10∼15 individuals with the shell height of 5∼6 cm. The fastest growth rates were observed at 15∼20 m depth; however, it is recommended that 20∼30 m would be optimal. The scallops require 22 months to attain the commercial size of 10 cm shell height and 140 g total weigh, and are best harvested and sold during March-April.

  • PDF