• Title/Summary/Keyword: winter cultivation

Search Result 326, Processing Time 0.026 seconds

Medium composition for Flammulina velutipes bottle cultivation utilizing cassava stem chips (카사바줄기칩을 활용한 팽이버섯 병재배용 배지의 조성)

  • Cheong, Jong-Chun;Lee, Chan-Jung;Moon, Ji-Won
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • This study was conducted to establish replacement the corncob used in winter mushroom bottle cultivation. Corncob is unstable quality in moisture content or total nitrogen(T-N) content. Fruit body yields according to the ratio of cassava stem chips mixing were compared. After treatment-1 and treatment-2, fruit body yields increased by 8.8% and 5.4% and raw material cost decreased by 7% and 19%. The results showed that cassava stem chips could replace 33% to 67% of corncob for winter mushroom bottle cultivation.

Effect of Cropping System on Disease Incidence by Soil-borne Bymovirus in Barley and on Density of the Vector, Polymyxa graminis (작부형태가 보리의 토양전염성 Bymovirus 발생과 매개균(Polymyxa graminis)의 밀도 변화에 미치는 영향)

  • Park, Jong-Chul;Noh, Tae-Hwan;Kim, Mi-Jung;Lee, Sang-Bok;Park, Chul-Soo;Kang, Chun-Sik;Lee, Jung-Joon;Kim, Tae-Soo
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • In this study, changes in virus disease occurrence and yield were monitored in conventional cropping system(rice-barley) and soybean-barley double cropping system in virus-prone area for 5 years. Also, changes in the density of Polymyxa graminis, a fungal vector, was investigated. In assay tests, mixed infection of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) was observed. Disease severity was in the range of 7~9 in conventional cropping system. In continuous cropping of soybean-barley and 3-yearfallow land, disease severity also was around 7. However, disease severity was reduced to medium level (5) when barley cultivation was paused for one or two years in soybean-barley cropping. When barley cultivation was paused for a year, the density of P. graminis, a fungal vector for BaYMV and BaMMV, reduced in barley root and soil. Similarly, barley growth was also enhanced by adopting fallow seasons. Compared with the fifth year of conventional cropping, the number of tillers per $m^2$ was increased by 158 when barley cultivation was paused for an year in soybean-barley cropping. When soybean and barley were cultivated continuously or complete fallow period was extended to three years, plant height and the number of tillers of barley were decreased. Yield components of barley in soybean-barley cropping were superior to those in rice-barley cropping. Compared with the fifth year of conventional cropping and soybean-barley cropping, culm length of barley was 1.3~2.3 cm higher and the number of tillers per $m^2$ was 36~90 higher when barley cultivation was paused for one or two years. However, those in continuous cropping of soybean-barley and 3-year-fallow land were lower compared with conventional cropping. Similarly, yield was increased when barley cultivation was paused for one or two years in the third, forth, and fifth years when compared with conventional cropping.

A Study on the Development of Supply-Demand Outlook Model for Jeju Winter Radish (제주 월동무 중장기 수급전망 모형의 개발)

  • Kim, Bae-Sung;Ko, Bong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1471-1477
    • /
    • 2014
  • This paper addresses the development on supply-demand outlook model of Jeju winter radish and introduces a projection of supply-demand and market prices during 2014-2018 using the model. The supply-demand outlook model is specified as a partial equilibrium model of Jeju winter radish. Each equation in the model is estimated by using the econometric techniques. A review of the model stability is also carried out by the references based on RMSPE, MAPE, and Theil's inequality coefficients. According to the reference of RMAPE, the error rates of the forecasting values of the cultivation ares, production quantity, and consumption quantity show less than 4% and the error rate of market price is below 10%. The cultivation area and production quantity are projected respectively to be increased to 6,650ha and 433,310MT in 2018.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Comparative Evaluation for Environmental Impact of Rapeseed and Barley Cultivation in Paddy Field for Winter using Life Cycle Assessment (겨울논 유채와 보리 재배시 전과정평가 방법을 이용한 환경영향 비교 평가)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Ahn, Min-Sil;Ok, Yong-Sik;Kim, Jeong-Gyu;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.59-68
    • /
    • 2016
  • The application of the Life Cycle Assessment (LCA) methodology to assess the environmental impact of rapeseed cultivation in winter fallow after harvesting rice was investigated and compared with barley cultivation in crop rotation system. Data for input materials were collected and analyzed by 1 ton rapeseed and barley as functional unit. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. From the comparison of impact categories such as greenhouse effect, ozone depletion, acidification, heavy metals, carcinogens, summer smog, and energy resources for 1 ton of final product, emission potential from rapeseed was higher than that from barley. The range from 65 to 96% of these potential came from chemical fertilizer. On the other hand, eutrophication potential from barley was higher than that from rapeseed, mainly came from utilizing the chemical fertilizer. During the cultivation of barley and rape, environmental burden by heavy metals was evaluated by 0.5 Pt, larger than points from other impact categories. The sum of points from all impact categories in barley and rapeseed was calculated to be 0.78 Pt and 0.82 Pt, respectively. From the sensitivity analysis for barley and rapeseed, scenario 1 (crop responses to fertilization level) showed the environmental burden was continuously increased with the amount of fertilization in barley cultivation, while it was not increased only at the optimum crop responses to fertilization in rapeseed (R3). With these results, rapeseed cultivation in winter fallow paddy contributed to the amounts of environmental burden much more than barley cultivation. It is, however, highly determined that environmental weighted point resulted from evaluating both cultivation was not significantly different.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Establishment of Pre-Harvest Residue Limit(PHRL) of the Fungicide Amisulbrom during Cultivation of Winter-Grown Cabbage (엇갈이배추 재배기간 중 살균제 Amisulbrom의 생산단계 잔류허용기준 설정)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Kim, Min-Ji;Hong, Seung-Beom;Hwang, Young-Sun;Kwon, Chan-Hyeok;Son, Young Wook;Lee, Young Deuk;Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • BACKGROUND: Supervised residue trials were conducted to establish pre-harvest residue limit(PHRL), a criterion to ensure the safety of the pesticide residue in the crop harvest, of amisulbrom for winter-grown cabbage in two fields. Following to application of amisulbrom on the crop, time-course study was carried out to obtain the amisulbrom dissipation of statistical significance which enabled to calculate the predicted values of PHRL. METHOD AND RESULTS: During cultivation under greenhouse condition, samples of winter-grown cabbage were collected at 0, 1, 3, 5, 7 and 10 days after amisulbrom application, and subjected to residue analysis. Analytical method was validated by recoveries ranging 93.7~100.0% as well as limit of quantitation(LOQ) of 0.04 mg/kg. Amisulbrom residues in winter-grown cabbage gradually decreased as time elapsed. The dissipation rate of the residue would be affected by intrinsic degradation along with dilution by the cabbage growth. The decay pattern was well fitted by the simple first-order kinetics. CONCLUSION: Biological half-lives of amisulbrom in winter-grown cabbage ranged 3.7~4.1 days in two field conditions. Based on the regression of amisulbrom dissipation, PHRLs of amisulbrom in winter-grown cabbage were recommended as 8.86~9.47 and 4.21~4.35 mg/kg for 10 and 5 days before harvest, respectively.

Practice in Dual-purpose Barley for Forage and Grain with Early-sown Barley having Different Winter Habits (파성이 다른 보리의 월동전 예취회수에 따른 청예 및 종실 겸용 재배에 관한 연구)

  • 김대호;김은석;김수경;손길만;송근우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.495-500
    • /
    • 2003
  • To establish the dual-purpose barley cultivation for forage by clipping before overwintering and grain next year, an experiment was conducted to clarify the effect of clipping times and cultivars haying different winter habits in rice-barley cropping system at paddy field in southern Korea. Barley showed more forage yield by clipping once only on December 10 than that of twice-clipping on November 10 and December 10. Among experimented cultivars, Saegangbori (winter habit II) and Keunalbori (winter habit IV) produced higher forage yield in one time clipping than the others. On the contrary, higher total digestive nutrients(TDN) was gained from twice-cut plants. Barley clipped once or twice headed and matured without serious delay as compared to the conventionally sown barley. In spite of clipping in November and/or December, barley produced grain yield similar to that of the conventional. Conclusively, it was regarded that cultivars having II-III winter habit were suitable for dual-purpose barley cultivation for forage in winter season and grain harvest next year.

Comparisons of Soil Nitrate and Corn Nitrogen Uptake According to Winter Forage Rye and Green Manure Hairy Vetch (동계 사초호밀 및 녹비 헤어리베치 재배에 따른 토양 질산태질소 및 옥수수 질소 흡수량 비교)

  • 서정호;이호진;허일봉;김시주;김충국;조현숙
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.3
    • /
    • pp.199-206
    • /
    • 2000
  • This experiment was conducted to evaluate the effect of winter forage rye and green manure hairy vetch on soil mineral nitrogen and corn nitrogen uptake. Soil nitrate at corn seeding decreased slightly with cultivation of winter rye, but soil nitrate did not decreased by cultivation of winter hairy vetch. Soil nitrate nitrogen increased 60~70 kgN/ha higher by hairy vetch green manure than winter rye and fallow at 6-leaf and harvest stage of corn, respectively, and much soil nitrate nitrogen such as 85, 125 kgN/ha was remained at N fertilizer 100, 200 kgN/ha of hairy vetch green manure at harvesting time, respectively. Corn yield was not different among treatments of winter crop and N rate, but nitrogen concentration of corn stover increased by hairy vetch green manure. Increase of total corn nitrogen uptake by hairy vetch green manure was 50~60 kgN/ha compared with winter rye and fallow. It is thought that basal fertilizer nitrogen 100 kgN/ha could be reduced by hairy vetch green manure in considering soil nitrate and nitrogen uptake at harvesting time.

  • PDF

The Ecological Studies for Cultivation of Coptis Rhizome (황연(黃連) 재배(栽培)를 위한 생태학적(生態學的) 연구(硏究))

  • Lee, Kyong-Soon;Lee, Seung-Ho;Yook, Chang-Soo;Saiki, Yasuhisa
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.2
    • /
    • pp.134-141
    • /
    • 1991
  • In an effort to make it possible to cultivate Coptis japonica in Korea, the environmental and ecological conditions allowing the wild growth and distribution of Coptis sp. in Japan were investigated. The environmental conditions of the culture yard and the culture methods of C. japonica were also investigated. From these studies, it was concluded that the cultivation of C. japonica requires a well-drained sandy soil, $pH\;4.5{\sim}5.5$, which is facing North or Northwest. The area suitable for the cultivation of C. japonica should have rainfall of $1,000{\sim}1,500mm$ per year, be covered with snow for $30{\sim}60$ days in the winter, and be blocked $40{\sim}70%$, of the sun shine. These findings suggest that in korea the cultivation of C. japonica may be possible in the areas ranging from Sock-cho to Kang-neung, Mt. Odae, Mt. Taebaek and Mt. Sobaek where is chill and much moisturous in summer.

  • PDF