• 제목/요약/키워드: wing in ground effect

검색결과 91건 처리시간 0.026초

글라이딩하는 날치의 날개형상 및 성능에 관한 연구 (Investigation of the Wing Design and Performance of a Gliding Flying Fish)

  • 박형민;최해천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF

Study on Wake Roll-Up Behavior Behind Wings In Close Proximity to the Ground

  • Han, Cheol-Heui;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.76-81
    • /
    • 2002
  • A numerical simulation of wake behavior behind three-dimensional wings in ground effect is done using an indirect boundary element method (Panel Method). An integral equation is obtained by applying Green's 2nd Identity on all surfaces of the flow domain. The AIC is constructed by imposing the no penetration condition on solid surfaces, and the Kutta at the wing's trailing edge. The ground effect is included using an image method. At each time step, a row of wake panels from wings' trailing edge are convected downstream following the force-free condition. The roll-up of wake vortices behind wings in close proximity is simulated.

경량화 소형 위그선 구조 예비 설계에 관한 연구 (Study on Preliminary Structural Design of Light Weight Small Scale WIG Craft)

  • 공창덕;박현범;김주일;이승현;윤재휘
    • 항공우주시스템공학회지
    • /
    • 제1권1호
    • /
    • pp.36-44
    • /
    • 2007
  • This study was performed on preliminary structural design of a small scale WIG craft which has been developed as a next generation high speed maritime transportation system in Korea. A composite structure design using the foam-sandwich for main wing and tail fins and the honeycomb sandwich and skin-stringer-ring frame for fuselage was applied for weight reduction as well as structural stability. A commercial FEM code, NASTRAN for was utilized to confirm the structural safety for the reiterate design modifications to meet design requirements including the target weight. Each main wing was jointed with the fuselage by eight high strength insert bolts for easy assembling and disassembling as well as for assuring the required 20 years service life. For control surface structural design, the channel type spar, the foam sandwich skin and the lug joint were adopted.

  • PDF

지면효과익기의 비행특성 해석 및 비행제어 방식에 관한 연구 (A Study on Flight Characteristics and Flight Control Methodology for a Wing In Ground Effect Vehicle)

  • 송용규
    • 한국항행학회논문지
    • /
    • 제5권1호
    • /
    • pp.19-25
    • /
    • 2001
  • 본 논문에서는 지면효과익기의 종운동 비행특성을 해석하고 비행제어 방식에 관한 비교연구를 한다. 먼저 비행 동특성을 해석하기 위해 지면효과익기가 지닌 것으로 알려진 비선형 특성을 제한 사이클을 통하여 살펴보고 또 선형화되었을 때의 특성과 연관하여 살펴본다. 또한 제어방식을 비교연구하기 위해 순항시에 고도오차가 있는 경우와 상승, 순항, 하강모드에 대한 명령추종관점에서 제어시스템의 성능 및 제어입력 실현 가능성을 비교한다. 제어입력으로는 승강타, 추력제어, 플랩 등의 조합을 고려하고 제어기법으로는 선형이차레귤레이터에 기반한 출력명령추종제어를 적용한다.

  • PDF

해면효과익선의 종방향 안정성에 대한 연구 (Longitudinal Stability of a Wing-In-Ground Effect Craft)

  • 전호환;장종희;백광준
    • 대한조선학회논문집
    • /
    • 제36권3호
    • /
    • pp.60-70
    • /
    • 1999
  • 해면효과를 받는 WIG선의 종방향 안정성 특성은 고도에 따른 힘과 모멘트의 변화량 때문에 일반 항공기와는 매우 다르게 나타나며, WIG선의 안전한 설계 및 성능에 큰 영향을 준다. 해면 효과를 고려한 WIG선의 종방향 운동방정식으로부터 정안정성 및 동안정성 조건을 유도하고 이를 분석하였다. 20인승 WIG선의 실험데이터로부터 정적 및 동적 안정성 해석을 수행하였으며, 몇가지 설계인자의 변화에 따른 동적 운동특성도 조사하였다. 마지막으로 순항조건에서 비행성능(flying quality)을 군용 항공규정에 의해 분석하였다.

  • PDF

Investigation on Forced Vibration Behavior of WIG Craft Main Wing Structure Excited by Propulsion System

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.810-812
    • /
    • 2008
  • Previously study on structural design of the main wing of the twenty-seat class WIG(Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs in operation. According to the result of forced vibration analysis, structural design was modified to reduce the vibrations.

  • PDF

소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구 (A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle)

  • 공창덕;박현범;김주일;강국진;박미영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구 (Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle)

  • 박현범;강국진;공창덕
    • Composites Research
    • /
    • 제19권5호
    • /
    • pp.12-19
    • /
    • 2006
  • 본 논문에서 한국해양연구원에서 개발 중인 20인승급 소형 위그선의 주익 구조 설계 및 해석에 관한 연구를 수행하였다. 경량화를 위해 탄소/에폭시 복합재료를 적용하였으며, 구조 형태는 스킨 스파 폼 샌드위치 구조를 사용하였다. 개념 설계에는 복합재 설계 개념을 반영하였고, 상세 설계 및 경량화 구조 설계에는 상용 유한 요소 코드인 NASTRAN을 이용하여 구조 설계를 수행하였다. 여러 단계의 구조 설계 변경을 통해 최종 구조 설계 결과는 설계 요구 조건을 만족하는 결과임을 확인하였다. 또한 주익을 동체에 고정하기 위해 8개의 고강도 볼트를 이용한 삽입 볼트형 구조가 용이한 장탈과 20넌 이상의 피로 수명의 고려를 통해 채택되었다.