• Title/Summary/Keyword: winding time

Search Result 269, Processing Time 0.025 seconds

Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

  • Han, Tae Hee;Lim, Sung Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.44-47
    • /
    • 2017
  • In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules

  • Sorrentino, L.;Polini, W.;Carrino, L.;Anamateros, E.;Paris, G.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.1-23
    • /
    • 2008
  • Robotized filament winding technology involves a robot that winds a roving impregnated by resin on a die along the directions of stresses to which the work-piece is submitted in applications. The robot moves a deposition head along a winding trajectory in order to deposit roving. The trajectory planning is a very critical aspect of robotized filament winding technology, since it is responsible for both the tension constancy and the winding time. The present work shows two original rules to plan the winding trajectory of structural parts, whose shape is obtained by sweeping a full section around a 3D curve that must be closed and not crossing in order to assure a continuous winding. The first rule plans the winding trajectory by approximating the part 3D shape with straight lines; it is called the discretized rule. The second rule defines the winding trajectory simply by offsetting a 3D curve that reproduces the part 3D shape, of a defined distance; it is called the offset rule. The two rules have been compared in terms of roving tension and winding time. The present work shows how the offset rule enables achievement of both the required aims: to manufacture parts of high structural performances by keeping the tension on the roving near to the nominal value and to markedly decrease the winding time. This is the first step towards the optimization of the robotized filament winding technology.

Change in Curl of Newsprint by Physical Treatments - Effects of roll diameter, storage time, winding methods, calendering and humidity on curl - (물리적 처리에 의한 신문용지의 컬 변화 -권취롤의 직경, 저장 기간, 권취 방법, 캘린더링 및 습도의 영향-)

  • Lim, Yeon-Ju;Paik, Ki-Hyon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.60-66
    • /
    • 2004
  • The effects of roll diameter, winding time, winding methods and relative humidity on curl In newsprints(46$g/m^2$, 54 $g/m^2$, and 54 $g/m^2$ SNC) are examined. The larger MD curl appears at smaller roll diameter, with the extension of winding time, and at the treat ment of soft nip calendering. The MD curl shows the back side curl at winding methods with top side as outer side(TSO), and the top side curl with top side as inner side(TSI). While the CD curl in newsprints( 46 $g/m^2$, and 54 $g/m^2$ SNC) treated with calender is hardly influenced by the storage times, roll diameter, and winding methods. However the CD curl in newsprint(54 $g/m^2$) gradually increases to a two weeks, and then hold constant regardless of roll diameter and winding methods.. The CD curl shows always the top side curl regardless of winding methods. At high relative humidity, the CD curl largely reduces, but the MD curl is not nearly changed. Especially, the CD curl in news-prints(54 $g/m^2$ SNC) is little affected by the changes of relative humidity.

Filament Band Winding Simulation for Fiber Reinforced Cylindrical Pressure Vessels (FRP의 원통형 압력 용기제작을 위한 필라멘트 밴드의 감김 시뮬레이션)

  • Yun, Jaedeuk;Fu, Jianhui;Jung, Yoongho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The filament winding method is widely used to manufacture products of fiber reinforced plastics (FRP), such as high pressure vessels, launch tubes and pipes. For reducing winding time, the method of winding by filament band which consists of several filament fibers is used. NC winding machine is used for precise winding and NC path is needed. Before filament winding, users should verify that winding path which presented by a line is appropriate by filament winding simulation. Also, the used length of each filament is different. So, if the peak filament exhausted, it causes to stop manufacturing. In this research, we developed software which visualizes 3D graphic of filament band winding path and simulates winding process on real time. And we proposed algorithm about calculation of each filament usage. We use geodesic equation for generating filament band surface and calculating the usage length of each filament.

Tension Control of a Winding Machine using Time-delay Estimation (시간 지연 추정 기법을 이용한 권취기의 장력 제어 알고리즘)

  • Heo, Jeong-Heon;You, Byungyong;Kim, Jinwook
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • We propose a tension controller based on a time-delay estimation (TDE) technique for a winding machine. Firstly, we perform the necessary calculations to derive a mathematical model of the winding machine. In this sense, it is revealed that the roll radius of the winding machine is characteristically seen to be increasing or decreasing during the winding process. That being said, it is noted that the parameters of the winding machine are coupled and constantly changing during this process. Understandably then, it is noted that the model is shown to be nonlinear and time-varying. Secondly, we propose the way to apply the TDE based controller which is the so-called Time-delay Control (TDC). The TDC utilizes the time-delayed information intentionally to compensate the nonlinear and time-varying characteristics. As we have seen, the proposed controller consists of two parts: one is a TDE component, and the other is an error dynamics component which is defined by a user. In a computer simulation based on the Matlab/Simulink program, the proposed controller is compared with a conventional PID controller, which is widely used in the tension control of the winding machine. The proposed controller reduces the incidence of overshoot and steady-state error in the tension control, as compared to the conventional PID controller.

A Study on the Measurement of the Winding Resistance Influences the Efficiency Evaluation of 3phase Induction Motors (삼상유도전동기 권선저항 측정이 효율 산출에 미치는 영향에 관한 연구)

  • Kang, Byung-Guk;Kim, Kwang-Min;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • 3phase induction motor consumes 40% of national electric power. so It is one of the most important electric device for the national power policy. The efficiency measurement is carried out by IEC standards. After the temperature rise test, It's difficult to measure the winding resistance immediately. because of inertia and power cut-off time. Therefore, IEC standards suggest the measurement time. But during the measurement time, the winding temperature cools down. It causes the value of winding resistance is variable. Several conditions which possibly occurred by the measurement time of IEC 60034-1 are suggested. and The efficiency evaluation of 3phase induction motors is carried out by IEC 60034-2-1 with the several conditions. As the results, we find out the winding resistance rapidly goes down within 15 sec. so It proves that the winding resistance should be measured within 15 sec. for the efficiency evaluating of 3phase induction motor.

A nonlinear PID control of winding tension using contact roll (접압롤을 이용한 권취장력의 비선형 PID 제어)

  • Shin, K.H;Kim, K.T;Cheon, S.M
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2029-2037
    • /
    • 1997
  • In a web winding process, the contact roll plays many important roles including air-entrainment control and WIT(Wound In Tension) regulation. The behavior of contact roll significantly affects the winding tension characteristics specifically at the time of contact when the speeds of contact roll and the winding roll are not synchronized. A mathematical model for the web, the winding roll, and the contact roll is derived. By using the model derived, a nonlinear PID(NPID) controller is designed to control the winding tension at the time of contact and separation between the contact roll and the winding roll. Computer simulation study showed that the performance of the winding system with the NPID controller significantly improved compared with that of a system with PID controller.

Development of a Guiding System for the High-Speed Self-Align Cable Winding (고속 자동정렬 케이블 와인딩을 위한 가이딩 시스템 개발)

  • 이창우;강현규;신기현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.124-129
    • /
    • 2004
  • Recently, the demand for the optical cable is rapidly growing because the number of internee user increases and high speed internet data transmission is required. But the present optical cable winding systems has some serious problems such as pile-up and collapse of cable usually near the flange of the bobbin in the process of the cable winding. To reduce the pile-up collapse in a cable winding systems, a new guiding system is developed for a high-speed self-align cable winding. First of all, the winding mechanism was analyzed and synchronization logics for the motions of winding, traversing, and the guiding were created. A prototype cable winding systems was manufactured to validate the new guiding system and the suggested logic. Experiment results showed that the winding system with the developed guiding system outperformed the system without the guiding system in reducing pile-up and collapse in the high-speed winding.

Analysis of Magnetic Field of Superconducting Winding According to the Changed Damper Thickness and Material (댐퍼의 두께와 재질 변화에 따른 초전도 선재에 미치는 자장특성 분석)

  • Jeong, Jae-Sik;Lee, Sang-Ho;Hong, Jung-Pyo;Jo, Young-Sik
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.5-8
    • /
    • 2012
  • Superconducting windings of synchronous machine have to be operated in below the critical temperature, critical current density and critical magnetic field. If one of these characteristics does not satisfied, then the quench occurred in superconducting winding. Especially the armature current dramatically increased as the superconducting generator is short-circuited at the rated load condition and magnetic field in field winding increased due to the armature current. Therefore, damper is required to reduce the magnetic field of field winding which increases reliability of the superconducting generator. Damper dimension can be decided by time constant[1-2]. In this paper the basic model is high-power and low-speed superconducting generator. Damper time constant was calculated from the changed damper thickness and material. Magnetic flux of field coil at the basic model and changed damper time constant model is analyzed.

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.