• Title/Summary/Keyword: wind-tunnel in civil engineering

Search Result 329, Processing Time 0.02 seconds

Across-wind dynamic loads on L-shaped tall buildings

  • Li, Yi;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.385-403
    • /
    • 2016
  • The across-wind dynamic loads on L-shaped tall buildings with various geometric dimensions were investigated through a series of wind tunnel testing. The lift coefficients, power spectral densities and vertical correlation coefficients of the across-wind loads were analyzed and discussed in details. Taking the side ratio and terrain category as key variables, empirical formulas for estimating the across-wind dynamic loads on L-shaped tall buildings were proposed on the basis of the wind tunnel testing results. Comparisons between the predictions by the empirical formulas and the wind tunnel test results were made to verify the accuracy and applicability of the proposed formulas. Moreover, a simplified procedure to evaluate the across-wind dynamic loads on L-shaped tall buildings was derived from the proposed formulas. This study aims to provide a simple and reliable way for the estimation of across-wind dynamic loads on L-shaped tall buildings.

Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models

  • Venanzi, I.;Materazzi, A.L.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.495-508
    • /
    • 2012
  • The present paper is focused on the prediction of the acrosswind aeroelastic response of square tall buildings. In particular, a semi-analytical procedure is proposed based on the assumption that square tall buildings, for reduced velocities corresponding to operational conditions, do not experience vortex shedding resonance or galloping and fall in the range of positive aerodynamic damping. Under these conditions, aeroelastic wind tunnel tests can be unnecessary and the response can be correctly evaluated using wind tunnel tests on rigid models and analytical modeling of the aerodynamic damping. The proposed procedure consists of two phases. First, simultaneous measurements of the pressure time histories are carried out in the wind tunnel on rigid models, in order to obtain the aerodynamic forces. Then, aeroelastic forces are analytically evaluated and the structural response is computed through direct integration of the equations of motion considering the contribution of both the aerodynamic and aeroelastic forces. The procedure, which gives a conservative estimate of the aeroelastic response, has the advantage that aeroelastic tests are avoided, at least in the preliminary design phase.

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

Wind load on irregular plan shaped tall building - a case study

  • Chakraborty, Souvik;Dalui, Sujit Kumar;Ahuja, Ashok Kumar
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-73
    • /
    • 2014
  • This paper presents the results of wind tunnel studies and numerical studies on a '+' plan shaped tall building. The experiment was carried out in an open circuit wind tunnel on a 1:300 scale rigid model. The mean wind pressure coefficients on all the surfaces were studied for wind incidence angle of $0^{\circ}$ and $45^{\circ}$. Certain faces were subjected to peculiar pressure distribution due to irregular formation of eddies caused by the separation of wind flow. Moreover, commercial CFD packages of ANSYS were used to demonstrate the flow pattern around the model and pressure distribution on various faces. k-${\varepsilon}$ and SST viscosity models were used for numerical study to simulate the wind flow. Although there are some differences on certain wall faces, the numerical result is having a good agreement with the experimental results for both wind incidence angle.

A design method for multi-degree-of-freedom aeroelastic model of super tall buildings

  • Wang, Lei;Zhu, Yong-jie;Wang, Ze-kang;Fan, Yu-hui
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.219-225
    • /
    • 2021
  • Wind tunnel test models for super tall buildings mainly include synchronized pressure models, high-frequency force balance models, forced vibration models and aeroelastic models. Aeroelastic models, especially MDOF aeroelastic models, are relatively accurate, and designing MDOF model is an important step in aero-model wind tunnel tests. In this paper, the authors propose a simple and accurate design method for MDOF model. The purpose of this paper is to make it easier to design MDOF models without unnecessary experimentation, which is of great significance for the use of the aero-model for tall buildings.

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

Wind tunnel study of wind loading on rectangular louvered panels

  • Zuo, D.;Letchford, C.W.;Wayne, S.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.449-463
    • /
    • 2011
  • Drag forces on a rectangular louvered panel, both as a free-standing structure and as a component in a generic low-rise building model, were obtained in a wind tunnel study. When tested in a building model, the porosity ratio of the wall opposite the louvered panel was varied to investigate its effect on the loading of the louvered panel. Both mean and pseudo-steady drag coefficients were obtained. Comparisons with the provisions for porous walls in contemporary loading standards indicate that for some opposite wall porosity ratios, the standards specify significantly different wind loads (larger and smaller) than obtained from this wind tunnel study.

Assessment of across-wind responses for aerodynamic optimization of tall buildings

  • Xu, Zhendong;Xie, Jiming
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.505-521
    • /
    • 2015
  • A general approach of aerodynamic optimization of tall buildings is presented in this paper, focusing on how to best compromise wind issues with other design aspects in the most efficient manner. The given approach is reinforced by establishing an empirical method that can quickly assess the across-wind loads and accelerations as a function of building frequencies, building dimensions, aspect ratios, depth-to-width ratios, and site exposures. Effects of corner modifications, including chamfered corner and recessed corner, can also be assessed in early design stages. Further, to assess the effectiveness of optimization by tapering, stepping or twisting building elevations, the authors introduce a method that takes use of sectional aerodynamic data derived from a simple wind tunnel pressure testing to estimate reductions on overall wind loads and accelerations for various optimization options, including tapering, stepping, twisting and/or their combinations. The advantage of the method is to considerably reduce the amount of wind tunnel testing efforts and speed up the process in finding the optimized building configurations.

Wind direction field under the influence of topography, part I: A descriptive model

  • Weerasuriya, A.U.;Hu, Z.Z.;Li, S.W.;Tse, K.T.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.455-476
    • /
    • 2016
  • In both structural and environmental wind engineering, the vertical variation of wind direction is important as it impacts both the torsional response of the high-rise building and the pedestrian level wind environment. In order to systematically investigate the vertical variation of wind directions (i.e., the so-called 'twist effect') induced by hills with idealized geometries, a series of wind-tunnel tests was conducted. The length-to-width aspect ratios of the hill models were 1/3, 1/2, 1, 2 and 3, and the measurements of both wind speeds and directions were taken on a three-dimensional grid system. From the wind-tunnel tests, it has been found that the direction changes and most prominent at the half height of the hill. On the other hand, the characteristic length of the direction change, has been found to increase when moving from the windward zone into the wake. Based on the wind-tunnel measurements, a descriptive model is proposed to calculate both the horizontal and vertical variations of wind directions. Preliminarily validated against the wind-tunnel measurements, the proposed model has been found to be acceptable to describe the direction changes induced by an idealized hill with an aspect ratio close to 1. For the hills with aspect ratios less than 1, while the description of the vertical variation is still valid, the horizontal description proposed by the model has been found unfit.

Wind pressure and buckling of grouped steel tanks

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.23-44
    • /
    • 2007
  • Wind tunnel experiments on small scale groups of tanks are reported in the paper, with the aim of evaluating the pressure patterns due to group effects. A real tank configuration is studied in detail because one tank buckled during a hurricane category 3. Three configurations are studied in a wind tunnel, two with several tanks and different wind directions, and a third one with just one blocking tank. The pressures were measured in the cylindrical part and in the roof of the tank, in order to obtain pressure coefficients. Next, computational buckling analyses were carried out for the three configurations to evaluate the buckling pressure of the target structure. Finally, imperfection-sensitivity was investigated for one of the configurations, and moderate sensitivity was found, with reductions in the maximum load of the order of 25%. The results help to explain the buckling of the tank for the levels of wind experienced during the hurricane.