• 제목/요약/키워드: wind-structure interaction

검색결과 185건 처리시간 0.021초

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

버켓기초를 가진 해상풍력타워의 지반-구조물 상호작용해석 (Soil-structure interaction analysis for the offshore wind tower with bucket foundation)

  • Lee, Gyehee;Kim, Sejeong;Phu, Tranduc
    • 한국재난정보학회 논문집
    • /
    • 제10권2호
    • /
    • pp.244-252
    • /
    • 2014
  • 본 연구에서는 버켓기초로 지지된 해상풍력타워의 지진응답을 지반-구조물 상호작용을 고려하여 해석하였다. 해석프로그램으로는 SASSI를 사용하였으며 연약지반에 대해 생성된 인공지진파를 입력으로 사용하였다. 버켓기초의 형상과 강도를 매개변수로 하여 각 매개변수들의 영향을 파악하였다. 구조물의 응답은 타워의 하부와 나셀위치에서 얻어졌으며 응답스펙트럼으로 비교하였다. 해석결과 형상비, 버켓의 강도, 지반의 강도에 따라서 기초부와 나셀부에서 다른 경향의 응답을 보였다. 그러나 이러한 모든 지반-구조물상호작용의 고려는 암반으로 가정한 거동에 비하여 월등히 큰 응답 값을 보여 이의 고려가 버켓기초를 가진 해상풍력타워의 지진거동에 큰 영향을 미치는 것을 파악할 수 있었다.

고층건물의 풍하중 유발 진동해석 (Wind Load Induced Vibration Analysis for Tall Structure)

  • 김동현;김유성;김요한;김동만;이종욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.658-659
    • /
    • 2009
  • In this study, fluid-induced vibration (FIV) analyses have been conducted for tall building structure. In order to investigate the aeroelastic responses of tall building due to wind load, advanced computational analysis system based n computational fluid dynamics(CFD) and computational structural dynamics (CSD) has been developed. Fluid domains are modeled using the computational grid system with local grid deforming technique. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of tall structure for fluid-structure interaction (FSI) problems. Detailed aeroelastic responses and results are presented to show the physical phenomenon of the tall building.

  • PDF

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • 제35권2호
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어 (Mechanical Loads Analysis and Control of a MW Wind Turbine)

  • 남윤수;최한순
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design

  • Morgenthal, Guido;McRobie, Allan
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.101-114
    • /
    • 2002
  • Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes equations have been employed to study the air flow around long-span bridge decks. The implementation and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver. Applications to the wind engineering of bridge decks include flow simulations at different angles of attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being presented and their specific features described. If a numerical method shall be employed in a practical design environment, it is judged not only by its accuracy but also by factors like versatility, computational cost and ease of use. Conclusions are drawn from the analyses to address the question of whether computer simulations can be practical design tools for the wind engineering of bridge decks.

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • 제23권1호
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

옥외형 피난계단의 풍압에 따른 내구성 검증을 위한 유동-구조 연성해석 (Flow-structure Interaction Analysis for Durability Verification by the Wind Force of Outdoor Evacuation Stairs)

  • 이석영
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.97-102
    • /
    • 2020
  • 본 연구에서는 화재가 발생하였을 때 작동되는 옥외형 피난계단 구조물이 태풍에 따른 풍압이 작용하였을 때 내구성을 검증하기 위하여 단방향 유동-구조 연성해석을 진행하였다. 이를 위해, 피난계단 구조물 주위에 대한 유동장을 정상상태로 유동해석을 수행하였고, 이러한 해석결과를 구조해석을 위한 입력 데이터로 사용하여 구조응력, 변형량, 피로수명 등의 계산을 통해 내구성을 분석하였다. 유동해석 결과, 피난계단 구조물 형상에 따라 공기에 의한 유동 흐름이 다르게 나타났으며, 이러한 유동속도 분포는 구조물 표면에 전압력으로 작용하였다. 또한, 이러한 전압력에 의해 계산된 구조해석 결과, 최대응력값으로 계산된 안전율이 허용치 이상으로 나타났으며, 피로수명과 변형량 분석을 통해 내구성을 입증하였다.