• Title/Summary/Keyword: wind-speed change

Search Result 373, Processing Time 0.028 seconds

Development of the National Integrated Daily Weather Index (DWI) Model to Calculate Forest Fire Danger Rating in the Spring and Fall (봄철과 가을철의 기상에 의한 전국 통합 산불발생확률 모형 개발)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behavior and its spread. Thus, meteorological factors as well as topographical and forest factors were considered in the fire danger rating systems. This study aims to develop an advanced national integrated daily weather index(DWI) using weather data in the spring and fall to support forest fire prevention strategy in South Korea. DWI represents the meteorological characteristics, such as humidity (relative and effective), temperature and wind speed, and we integrated nine logistic regression models of the past into one national model. One national integrated model of the spring and fall is respectively $[1+{\exp}\{-(2.706+(0.088^*T_{mean})-(0.055^*Rh)-(0.023^*Eh)-(0.014^*W_{mean}))\}^{-1}]^{-1}$, $[1+{\exp}\{-(1.099+(0.117^*T_{mean})-(0.069^*Rh)-(0.182^*W_{mean}))\}^{-1}]^{-1}$ and all weather variables significantly (p<0.01) affected the probability of forest fire occurrence in the overall regions. The accuracy of the model in the spring and fall is respectively 71.7% and 86.9%. One integrated national model showed 10% higher accuracy than nine logistic regression models when it is applied weather data with 66 random sampling in forest fire event days. These findings would be necessary for the policy makers in the Republic of Korea for the prevention of forest fires.

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images (MODIS 영상을 이용한 빙하의 정규청빙지수(NDBI) 개발 및 변화요인 분석)

  • Han, Hyangsun;Ji, Younghun;Kim, Yeonchun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.481-491
    • /
    • 2014
  • Blue-ice area is a glacial ice field in ice sheet, ice shelf and glaciers where snow ablation and sublimation is larger than snowfall. As the blue-ice area has large influences on the meteorite concentration mechanism and ice mass balance, it is required to quantify the concentration of blue-ice. We analyzed spectral reflectance characteristics of blue-ice, snow and cloud by using MODIS images obtained over blue-ice areas in McMurdo Dry Valleys, East Antarctica, from 2007 to 2012. We then developed Normalized Difference Blue-ice Index (NDBI) algorithm which quantifies the concentration of blue-ice. Snow and cloud have a high reflectance in visible and near-infrared (NIR) bands. Reflectance of blue-ice is high in blue band, while that lowers in the NIR band. NDBI is calculated by dividing the difference of reflectance in the blue and NIR bands by the sum of reflectances in the two bands so that NDBI = (Blue-NIR)/(Blue + NIR). NDBI calculated from the MODIS images showed that the blue-ice areas have values ranging from 0.2 to 0.5, depending on the exposure and concentration of blue-ice. It is obviously different from that of snow and cloud that has values less than 0.2 or rocks with negative values. The change of NDBI values in the blue-ice area has higher correlation with snow depth ($R^2=0.699$) than wind speed ($R^2=0.012$) or air temperature ($R^2=0.278$), all measured at a meteorological station installed in McMurdo Dry Valleys. As the snow depth increased, the NDBI value decreased, which suggests that snow depth can be estimated from NDBI values over blue-ice areas. The NDBI algorithm developed in this study will be useful for various polar research fields such as meteorite exploration, analysis of ice mass balance as well as the snow depth estimation.

CFD Analysis for Microclimate of Venlo Type Glasshouse with the Screen Height and Air-inflow Quantity (스크린설치높이·공기유입량 차이에 따른 벤로형 유리온실 미기상 CFD 유동해석)

  • Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • The natural change of winter night temperature from 00:00 to 04:30 O'clock with the different height of thermal screen in a venlo type glasshouse (W59×L68×H5.9 m) was studied using computational fluid dynamics (CFD). At the early stage of CFD analysis, the room temperature decrease of glasshouse with the 5.9 m height of thermal screen were faster than it with the 4.1m height of thermal screen, but at 2 hr after analysis it was slower than in it with the 4,1m, the temperature difference was 0.6℃ after 4 hr. If we consider that turn on the heater when the temperature were decrease below 13℃ at 1hr after CFD analysis, it is good for energy saving in the glasshouse with the 4.1 m height of thermal screen rather than in it with the 5.9 m height, because of the temperature decrease were slow during 2 hrs after analysis. The airflow at the height of 2 m which were grown tomato were fast and wide in the glasshouse with the 5.9 m height thermal screen rather than in it with the 4.1 m, the speed difference was 0.034m·s-1 at 1hr after CFD analysis. The effect of temperature decrease in summer season were compared with the different height of shading screen from 12:00 to 14:30 O'clock. The height of shading screen were 5.7, 3.9 m, the gap of it were 30%. The air-inflow quantity by the fan with duct at lower part of venlo glasshouse was 0.67 ㎥·s-1 until 1hr and to increase 3 times of it from 1hr after analysis. The roof window were open 100%. Until 1hr of CFD analysis, the temperature in the 30% open of shading screen was 0.9℃ higher than in the none shading screen. From 13:00 O'clock when the air-inlet quantity to increase 3 times, the temperature in case 30% gap of shading screen were decreased compare with the none shading screen, the temperature difference was 0.5℃ at 14:30 O'clock. The temperature on the floor surface in case 30% gap of shading screen were lower with it's height increase, the temperature difference was 8℃ compare with none shading screen. The relative humidity difference were insignificant by the height and gap of shading screen.

A Study on Scenario to establish Coastal Inundation Prediction Map due to Storm Surge (폭풍해일에 의한 해안침수예상도 작성 시나리오 연구)

  • Moon, Seung-Rok;Kang, Tae-Soon;Nam, Soo-Yong;Hwang, Joon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-501
    • /
    • 2007
  • Coastal disasters have become one of the most important issues in every coastal country. In Korea, coastal disasters such as storm surge, sea level rise and extreme weather have placed many coastal regions in danger of being exposed or damaged during subsequent storms and gradual shoreline retreat. A storm surge is an onshore gush of water associated with a tow pressure weather system, typically in typhoon season. However, it is very difficult to predict storm surge height and inundation due to the irregularity of the course and intensity of a typhoon. To provide a new scheme of typhoon damage prediction model, the scenario which changes the central pressure, the maximum wind radius, the track and the proceeding speed by corresponding previous typhoon database, was composed. The virtual typhoon scenario database was constructed with individual scenario simulation and evaluation, in which it extracted the result from the scenario database of information of the hereafter typhoon and information due to climate change. This virtual typhoon scenario database will apply damage prediction information about a typhoon. This study performed construction and analysis of the simulation system with the storm surge/coastal inundation model at Masan coastal areas, and applied method for predicting using the scenario of the storm surge.

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF

Vegetation on Basic, Alkaloid, Arid Land of the Whole Area of Baicheng City, Jilin Province, China (중국(中國) 길림성(吉林省) 백성시(白城市) 일대의 염성(鹽性), 알칼리성 건조지(乾操地) 식생(植生)에 관한 연구)

  • Ahn, Young-Hee;Wang, Bai-Cheng;Jin, Ying-Hua;Choe, Chang-Young;Xuan, Yong-Nan;Song, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.90-98
    • /
    • 2009
  • Every spring, Korea is always plagued by sandy dust from the western region of China and Mongolia. Yellow sand is causing an environmental problem to Japan and far into the American continent, let alone Korea. At present, the western region of China is going under desertification at a great speed due to climatic change and humans' damaging activities. To cope with this, each country including China is considering ecological restoration of deserts through planting. Accordingly, this research conducted a vegetation survey on Baicheng district which is a representative dry land of western China to obtain a basic data for ecological restoration of a desert. The survey revealed that Setaria viridis which invaded an arid land made a succession into Setaria viridis-Cannabis sativa var. fruderalis community together with Artemisia mongolica-Setaria viridis community due to the increase in salt concentration and alkalization subsequent to dryness. It was also found out that there finally formed Artemisia mongolica community on a flat intense in harsh wind and dryness with the continuous worsening of environmental conditions. There appeared a different type of vegetation on hilly districts where sporadic shade could come into being because the air humidity could be available relatively there. Frequently, typically appearing at the whole survey area, the Tributlus terrestris community was found to make succession into Tribulus terrestris-Cleisrogenes squarrosa community due to the aggravation of soil environment. In addition, with the worsening of the environment at hilly districts, there formed Clesirogenes squarrosa community resistant to dryness, salinity in soil and strong alkalinity. Further, there appeared higher plant life totalling to 62 taxa comprising 58 species and 4 varieties with 27 families and 49 genuses at the whole survey area. Among these, Compositae plants excellent in resistance to environment was surveyed the most, accounting for 27%.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.