• 제목/요약/키워드: wind-loading

검색결과 432건 처리시간 0.022초

Wind-induced dynamic response of recessed balcony facades

  • Matthew J. Glanville;John D. Holmes
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.193-202
    • /
    • 2024
  • Modern high-rise tower designs incorporating recessed balcony cavity spaces can be prone to high-frequency and narrow-band Rossiter aerodynamic excitations under glancing incident winds that can harmonize and compete with recessed balcony volume acoustic Helmholtz modes and facade elastic responses. Resulting resonant inertial wind loading to balcony facades responding to these excitations is additive to the peak design wind pressures currently allowed for in wind codes and can present as excessive facade vibrations and sub-audible throbbing in the serviceability range of wind speeds. This paper presents a methodology to determine Cavity Amplification Factors to account for façade resonant inertial wind loads resulting from balcony cavity aero-acoustic-elastic resonances by drawing upon field observations and the results of full-scale monitoring and model-scale wind tunnel tests. Recessed balcony cavities with single orifice type openings and located within curved façade tower geometries appear particularly prone. A Cavity Amplification Factor of 1.8 is calculated in one example representing almost a doubling of local façade design wind pressures. Balcony façade and tower design recommendations to mitigate wind induced aero-acoustic-elastic resonances are provided.

Behavior of self supported transmission line towers under stationary downburst loading

  • Darwish, Mohamed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.481-498
    • /
    • 2011
  • During the past decade, many electrical transmission tower structures have failed during downburst events. This study is a part of a research program aimed to understand the behaviour of transmission lines under such localized wind events. The present study focuses on assessing the behaviour of self supported transmission line towers under downburst loading. A parametric study is performed to determine the critical downburst configurations causing maximum axial forces for various members of a tower. The sensitivity of the internal forces developing in the tower's members to changes in the downburst size and location was studied. The structural behaviour associated with the critical downburst configurations is described and compared to the behaviour under 'normal' wind loads.

풍력블레이드 비정상 공력하중 해석을 위한 자유후류기법 개발 및 실험적 연구 (New Free Wake Method Development for Unsteady Aerodynamic Load on HAWT Blade and Experimental Analysis)

  • 신형기;박지웅;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.33-36
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady air loads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interact ion. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NREL and SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

Wind pressure measurements on a cube subjected to pulsed impinging jet flow

  • Mason, M.S.;James, D.L.;Letchford, C.W.
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.77-88
    • /
    • 2009
  • A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.

Finite-element modeling of a light-framed wood roof structure

  • Jacklin, Ryan B.;El Damatty, Ashraf A.;Dessouki, Ahmed A.
    • Wind and Structures
    • /
    • 제19권6호
    • /
    • pp.603-621
    • /
    • 2014
  • Past high speed wind events have exposed the vulnerability of the roof systems of existing light-framed wood structures to uplift loading, contributing greatly to economic and human loss. This paper further investigates the behaviour of light-framed wood structures under the uplift loading of a realistic pressure distribution. A three-dimensional finite-element model is first developed to capture the behaviour of a recently completed full-scale experiment. After describing the components used to develop the numerical model, a comparison between the numerical prediction and experimental results in terms of the deflected shape at the roof-to-wall connections is presented to gain confidence in the numerical model. The model is then used to analyze the behaviour of the truss system under realistic and equivalent uniform pressure distributions and to perform an assessment of the use of the tributary area method to calculate the withdrawal force acting on the roof-to-wall connections.

Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

  • Kim, Eo-Jin;Sohn, Jong-Dae;Yi, Yu;Ogino, Tatsuki;Lee, Joo-Hee;Park, Jae-Woo;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.17-26
    • /
    • 2011
  • Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.

Design of tall residential buildings in Singapore for wind effects

  • Balendra, T.;Ma, Z.;Tan, C.L.
    • Wind and Structures
    • /
    • 제6권3호
    • /
    • pp.221-248
    • /
    • 2003
  • The design of high-rise building is often influenced by wind-induced motions such as accelerations and lateral deflections. Consequently, the building's structural stiffness and dynamic (vibration periods and damping) properties become important parameters in the determination of such motions. The approximate methods and empirical expressions used to quantify these parameters at the design phase tend to yield values significantly different from each other. In view of this, there is a need to examine how actual buildings in the field respond to dynamic wind loading in order to ascertain a more realistic model for the dynamic behavior of buildings. This paper describes the findings from full-scale measurements of the wind-induced response of typical high-rise buildings in Singapore, and recommends an empirical forecast model for periods of vibration of typical buildings in Singapore, an appropriate computer model for determining the periods of vibration, and appropriate expressions which relate the wind speed to accelerations in buildings based on wind tunnel force balance model test and field results.

부유식 풍력발전 해석 프로그램 WindHydro 특성 연구 (A Study on the Characteristics of WindHydro - a Floating Wind Turbine Simulation Code)

  • 송진섭;임채환;이성균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, 'WindHydro', is newly developed. In order to investigate the characteristics of the program, a series of loading cases are simulated such as (1) wind only case, (2) free decay cases with initial displacement, (3) wave only case (4) wind and wave case. The simulations are carried out for the 5-MW OC3-Hywind model which has a spar buoy and catenary mooring lines. As a result, the reliability of WindHydro is verified in most viewpoints although additional study is still necessary to clear out some uncertainty of the program.

  • PDF

Aerodynamic loading of a typical low-rise building for an experimental stationary and non-Gaussian impinging jet

  • Jubayer, Chowdhury;Romanic, Djordje;Hangan, Horia
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.315-329
    • /
    • 2019
  • Non-synoptic winds have distinctive statistical properties compared to synoptic winds and can produce different wind loads on buildings and structures. The current study uses the new capabilities of the WindEEE Dome at Western University to replicate a stationary non-Gaussian wind event recorded at the Port of La Spezia in Italy. These stationary non-Gaussian wind events are also known as intermediate wind events as they differ from non-stationary non-Gaussian events (e.g., downbursts) as well as stationary Gaussian events (e.g., atmospheric boundary layer (ABL) flows). In the present study, the wind loads on a typical low-rise building are investigated for an intermediate wind event reproduced using a continuous radial impinging jet (IJ) at the WindEEE Dome. For the same building model, differences in wind loads between ABL and IJ are also examined. Wind loads on different surface zones on the building, as defined in the ASCE code for design loads, are also calculated and compared with the code.

A nondestructive method for controlling wind loads and wind-induced responses of wooden pagoda

  • LI, Yuhang;DENG, Yang;LI, Aiqun
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.525-538
    • /
    • 2022
  • High-rise wooden pagodas generate large displacement responses under wind action. It is necessary and wise to reduce the wind loads and wind-induced responses on the architectural heritage using artificial plants, which do not damage ancient architecture and increase greenery. This study calculates and analyzes the wind loads and wind-induced responses on the Yingxian Wooden Pagoda, in China, using artificial plants via the finite element analysis (FEA). A three-dimensional wind-loading field was simulated using a wind tunnel test. Wind loads and wind-induced responses, including the displacement and acceleration of the pagoda with and without artificial plants, were analyzed. In addition, three types of tree arrangements were discussed and analyzed using the score method. The results revealed that artificial plants can effectively control wind loads and wind-induced displacements, but the wind-induced accelerations are enlarged to some extent during the process. The height of the tree significantly affected the shelter effects of the structure. The distance of trees from the pagoda and arrangement width of the tree had less influence on shelter effects. This study extends the understanding of the nondestructive method based on artificial plants, for controlling the wind base loads and structural responses of wooden pagodas and preserving architectural heritage via FEA.