• Title/Summary/Keyword: wind-loading

Search Result 428, Processing Time 0.026 seconds

Structural performance of an electricity tower under extreme loading using the applied element method- A case study

  • Chin, Jason Ah;Garcia, Mauricio;Cote, Jeffrey;Mulcahy, Ellen;Clarke, Jonathan;Elshaer, Ahmed
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.313-319
    • /
    • 2022
  • The resiliency of electricity transmission and distribution lines towards natural and man-made hazards is critical to the operation of cities and businesses. The extension of these lines throughout the country increases their risk of extreme loading conditions. This paper investigates a unique extreme loading condition of a 100-year old distribution line segment that passes across a river and got entangled with a boom of a ship. The study adopts the Applied Elements Method (AEM) for simulating 54 cases of the highly deformable structural behaviour of the tower. The most significant effects on the tower's structural integrity were found to occur when applying the load with components in all three of the cartesian directions (i.e., X, Y and Z) with the full capacities of the four cables. The studied extreme loading condition was determined to be within the tower's structural capacity, attributed to the shear failure of the anchor bolts, which acted as a sacrificing element that fails to protect the transfer of tensioning load to the supporting tower.

Experimental Study on the Structural Behaviour of Rotary Friction Damper (회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.

A Study on the Probability distribution of Recent Annal Fluctuating Wind Velocity (최근 연최대변동풍속의 확률분포에 관한 연구)

  • Oh, Jong Seop;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study is concerned with the estimation of fluctuate wind velocity statistic properties in the major cities reflecting the recent meteorological with largest data samples (yearly 2003-2012). The basic wind speeds were standardized homogeneously to the surface roughness category C, and to 10m above the ground surface. The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional wind design (gust load peak factor) on the basis of Gaussian processes. This assumption breaks down when the loading processes exhibits non-Gaussianity, in which a conventional wind design yields relatively non conservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. This study seeks to ascertain the probability distribution function from recently wind data with effected typhoon & maximum instantaneous wind speed.

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.553-562
    • /
    • 2006
  • Lateral loading due to wind or earthquake is a major factor that affects the design of high-rise buildings. This paper highlights the problems associated with the seismic design of high-rise buildings in regions of strong wind and moderate seismicity. Seismic response analysis and performance evaluation were conducted for wind-designed concentrically braced steel high-rise buildings in order to check the feasibility of designing them per elastic seismic design criterion (or strength and stiffness solution) in such regions. Review of wind design and pushover analysis results indicated that wind-designed high-rise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind design overstrength, high-rise buildings with a slenderness ratio of larger than four or five can elastically withstand even the maximum considered earthquake (MCE) with the seismic performance level of immediate occupancy under the limited conditions of this study. A step-by-step seismic design procedure per the elastic criterion that is directly usable for practicing design engineers is also recommended.

The structural safety assessment of a tie-down system on a tension leg platform during hurricane events

  • Yang, Chan K.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-283
    • /
    • 2011
  • The performance of a rig tie-down system on a TLP (Tension Leg Platform) is investigated for 10-year, 100-year, and 1000-year hurricane environments. The inertia loading on the derrick is obtained from the three-hour time histories of the platform motions and accelerations, and the dynamic wind forces as well as the time-dependent heel-induced gravitational forces are also applied. Then, the connection loads between the derrick and its substructure as well as the substructure and deck are obtained to assess the safety of the tie-down system. Both linear and nonlinear inertia loads on the derrick are included. The resultant external forces are subsequently used to calculate the loads on the tie-down clamps at every time step with the assumption of rigid derrick. The exact dynamic equations including nonlinear terms are used with all the linear and second-order wave forces considering that some dynamic contributions, such as rotational inertia, centripetal forces, and the nonlinear excitations, have not been accounted for in the conventional engineering practices. From the numerical simulations, it is seen that the contributions of the second-order sum-frequency (or springing) accelerations can be appreciable in certain hurricane conditions. Finally, the maximum reaction loads on the clamps are obtained and used to check the possibility of slip, shear, and tensile failure of the tie-down system for any given environment.

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.

The Uplift Capacity of Plane and Corrugated Piles for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝과 주름말뚝의 인발저항력)

  • Yong Cheol Yoon;Won Myung Suh;Jae Hong Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2001
  • The uplift capacity of a pile for improving the wind resistance of the 1-2 W type plastic film pipe on greenhouses was tested using the plane and corrugated piles with various shapes and diameters. First, the resistant uplift capacity was measured by using the uplift loading on plane piles. As the uplift loading on plane piles increased, the resistant uplift capacity also increased until the loading was reached to ultimate uplift capacity. After ultimate uplift capacity was appeared the uplift displacement, the uplift capacity was decreased gradually. Secondly, the resistant uplift capacity was measured by using the uplift loading on corrugated piles. After the uplift capacity was reached the uplift displacement, the uplift capacity was continually increased or decreased. In general, the ultimate uplift capacity was independent of pile shapes, pile diameter length, and embedded pipe depth. However, the ultimate uplift capacity of a corrugated pile was twice more than that of a plane pile without regard to its diameter and embedded depth. The ultimate uplift capacity per unit pile area was increasing in deeper embedded depth. However, the longer a pile diameter was, the less ultimate uplift capacity. The uplift capacity of a plane pile, used in conjunction with the design wind velocity (26.9m.s$^{-1}$ ) of the project area, was unsatisfiable without regard to diameters and embedded depths of piles, while most of corrugated piles were well appeared uplift capacity under various experimental conditions.

  • PDF

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

Study on Structural Design of Glass/epoxy Composite Blade and Tower of Vertical Axis Wind Turbine System (수직축 풍력 발전 시스템의 유리/에폭시 복합재 블레이드 및 타워 구조 설계 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • This study is to propose the structural design and analysis procedure about composite blade and tower of vertical axis wind turbine technology. In this study, structural design of tower for vertical axis wind turbine was performed after vertical blade design and manufacturing. The structural design requirement and specification of blade and tower was investigated. After tower of structural design, the structural analysis of the tower was conducted by the finite element method. It was performed that the stress, deformation and natural frequency analysis at the applied loading. The design modification of tower configuration was proposed by structural analysis. It was confirmed that the final designed tower structure is safety through the structural analysis.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.