• Title/Summary/Keyword: wind-induced vibration characteristics

Search Result 93, Processing Time 0.022 seconds

Field Observation and Analysis of Subspan Oscillatron in 4 Bundled Conductor Transmission Lines (가공송전선로의 서브스판 진동에 대한 실험 및 실측 분석)

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Lee, Dong-Il;Min, Byoung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.525-527
    • /
    • 2003
  • This paper presents a collection of a number of observations made on 4 bundled conductor transmission lines concerning the behaviour of conductors under the effect of natural winds. Namely in order to know the wind-induced vibration status and study wind-induced vibrations have been recorded and analyzed form the real transmission lines. By the field observation and analysis results, subspan oscillations among the wind-induced vibrations is known to be the main type of the vibrations. And some common characteristics of the observation sites, which have had high maintenance rate, can be found from the data also. It is considered that the main results described in this paper will be useful data and be used in controlling the subspan oscillations and protecting the conductors.

  • PDF

A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel (폐쇄형 시험부에서 케블라 덮개가 장착된 마이크로폰 어레이의 주파수 특성에 대한 실험적 연구)

  • Hwang, Eun-sue;Choi, Youngmin;Han, Huyngsuk;Kim, Yangwon;Cho, Taehwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.128-134
    • /
    • 2014
  • A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel. Microphones that are flush mounted in a closed test section wall of wind tunnel are subject to very high flow noise resulting from the turbulence in the wall boundary layer. At this time the microphones measure the strong hydrodynamic fluctuations generated by the flow. The phenomena are referred to a microphone self-noise and a method for reducing this has studied. In this paper the array that covered with acoustically transparent Kevlar sheet was designed and made to reduce the flow-induced self-noise. For the validation frequency characteristics of the Kevlar, the microphone array was installed on the wall and test was performed for white noise and sine wave of several frequencies using loudspeaker. In addition, the paper compared the signals as a tension of Kevlar. The results were presented that tend to decrease the sound pressure level at high frequency above 3500Hz according to existence of Kevlar.

  • PDF

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

Amplitude dependency of damping of tall structures by the random decrement technique

  • Xu, An;Xie, Zhuangning;Gu, Ming;Wu, Jiurong
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.159-182
    • /
    • 2015
  • This study focuses on the amplitude dependency of damping of tall structures by the random decrement technique (RDT). Many researchers have adopted RDT to establish the amplitude dependency of damping ratios in super-tall buildings under strong wind loads. In this study, a series of simulated examples were analyzed to examine the reliability of this method. Results show that damping ratios increase as vibration amplitudes increase in several cases; however, the damping ratios in the simulated signals were preset as constants. This finding reveals that this method and the derived amplitude-dependent damping ratio characteristics are unreliable. Moreover, this method would obviously yield misleading results if the simulated signals contain Gaussian white noise. Full-scale measurements on a super-tall building were conducted during four typhoons, and the recorded data were analyzed to observe the amplitude dependency of damping ratio. Relatively wide scatter is observed in the resulting damping ratios, and the damping ratios do not appear to have an obvious nonlinear relationship with vibration amplitude. Numerical simulation and field measurement results indicate that the widely-used method for establishing the amplitude-dependent damping characteristics of super-tall buildings and the conclusions derived from it might be questionable at the least. More field-measured data must be collected under strong wind loads, and the damping characteristics of super-tall buildings should be investigated further.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

Response characteristics and suppression of torsional vibration of rectangular prisms with various width-to-depth ratios

  • Takai, Kazunori;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.1-22
    • /
    • 2006
  • The response characteristics and suppression of flow-induced vibrations of rectangular prisms with various width-to-depth ratios were experimentally investigated. The prisms were rigid and elastically mounted at both ends to enable constrained torsional vibrations only. The present study focused on torsional vibrations, one of the three types of flow-induced vibrations generated in a rectangular prism. First, the response characteristics of torsional vibrations generated in rectangular prisms were investigated by free-vibration tests. It was found that the response characteristics of torsional vibrations generated in rectangular prisms could be classified into six patterns depending on the width-to-depth ratio. Next, the response characteristics of torsional vibrations observed in the free-vibration tests were reproduced by forced-vibration tests, and the mechanisms by which the three types of flow-induced vibrations, low-speed torsional flutter, vortex excitation and high-speed torsional flutter, are generated in the rectangular prisms were elucidated on the basis of characteristics of fluid forces and visualized flow patterns. Experiments were also carried out to establish an effective method for suppressing flow-induced vibrations generated in the rectangular prisms, and it was found that low-speed torsional flutter and high-speed torsional flutter could be suppressed by placing a small normal plate upstream of the prism, which results in suppression of the alternating rolling-up of the shear layers separating from the leading edges of the prism. It was also found that vortex excitation could be suppressed by placing a splitter plate downstream of the prism, which results in suppression of the generation of wake vortices.

Fluidelastic Instability of Flexible Cylinders in Tube Bundle Subjected to Cross Air-flow (공기-횡 유동장에 놓인 유연성 실린더 관군의 유체탄성 불안정)

  • Sim, Woo-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.498-506
    • /
    • 2007
  • Using wind tunnel, experimental approaches were employed to investigate fluidelastic instability of tube bundles, subjected to uniform cross flow. There are several flow-induced vibration excitation mechanisms, such as fluidelastic instability, periodic wake shedding resonance, turbulence-induced excitation and acoustic resonance, which could cause excessive vibration in shell-and tube heat exchanges. Fluidelastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross flow. The system comprised of cantilevered flexible cylinder(s) and rigid cylinders of normal square array, In order to see the characteristics of flow in tube bundles, particle image velocimetry was used. From a practical design point of view, Fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. The threshold flow velocity for dynamic instability of cylinder rows is evaluated and the data for design guideline is proposed for the tube bundles of normal square array.

Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation (저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF

Characteristics of fluctuating lift forces of a circular cylinder during generation of vortex excitation

  • Kim, Sangil;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.109-124
    • /
    • 2006
  • This paper describes the characteristics of the fluctuating lift forces when a circular cylinder vibrates in the cross-flow direction. The response characteristics on elastically supported the circular cylinder was first examined by a free-vibration test. Next, flow-induced vibrations obtained by the free-vibration test were reproduced by a forced-vibration test, and then the characteristics of the fluctuating lift forces, the work done by the fluctuating lift, the behavior of the rolling-up of the separated shear layers were investigated on the basis of the visualized flow patterns. The main findings were that (i) the fluctuating lift forces become considerably large than those of a stationary circular cylinder, (ii) negative pressure generates on the surface of the circular cylinder when the rolling-up of separated shear layer begins, (iii) the phase between the fluctuating lift force and the cylinder displacement changes abruptly as the reduced velocity $U_r$ increases, and (iv) whether the generating cross-flow vibration becomes divergent or convergent can be described based on the work done by the fluctuating lift force. Furthermore, it was found that the generation of cross-flow vibration can be perfectly suppressed when the small tripping rods are installed on the surface of the circular cylinder.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.