• Title/Summary/Keyword: wind-driven circulation

Search Result 42, Processing Time 0.019 seconds

Distribution of Water Masses and Characteristics of Temperature Inversion in the Western Seas of Jeju Island in Spring (봄철 제주도 서부해역의 수괴 분포와 수온역전 특징)

  • Kang, So-Young;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.191-207
    • /
    • 2022
  • Using the results of CTD casts made in Spring from 2017 to 2021, in this study we investigated the water mass distribution and occurrence of temperature inversion in the western seas of Jeju Island in spring. The distribution of water masses was characterized by cold and fresh water in the northwest and warm and saline water in the southeast, forming a strong thermohaline front running in the southwest-to-northeast direction. Strong temperature inversion mainly occurred in the frontal boundary when the cold water intrudes beneath the warm water at depths of 30-50 m. Analysis of the mixing ratio demonstrated that Jeju Warm Water is dominantly distributed in the western seas of Jeju Island, but its ratio can be modified depending on the southward extension of Yellow Sea Cold Water (YSCW). Results of in situ measurement showed that in 2020, the YSCW largely expanded to the western seas of Jeju Island, occupying approximately 40 % of the mixing ratio. Due to the expansion of YSCW, a strong thermohaline front was formed in the study area, thereby causing thick and strong temperature inversion. On the other hand, in 2018 the mixing ratio of YSCW was minimum (~18%) during the study period of 2017-2021, and thus a relatively weak frontal boundary was formed, without the occurrence of temperature inversion. The observational results also suggest that the interannual changes of water mass distribution and the associated temperature inversion in the western seas of Jeju Island are closely related with wind-driven Yellow Sea circulation in spring, which is the summer monsoon transition period.

Numerical Model for Spreading of Cochlodinium Bloom in the Southern Coastal Waters in Korea (한국 남해안에서 Cochlodinium적조 확산모델)

  • Kwon Chul Hui;Cho Ku Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.568-577
    • /
    • 2002
  • The spreading Cocuoainim polykikoides bloom in the southern coastal waters of Korea was simulated using numerical model including the physical processes of water flow and the chemical processes of increasing cell of C. polykikoides by uptake of dissolved nutrients. The circulation of sea water was simulated by two dimensional tide model reflecting the main four tidal components of $M_2,\;S_2,\;K_1,\;O_1$, and permanent current was driven by inflow/outflow across open boundaries. According to the result of model which tidal and permanent current were reflected simultaneously, eastward flows entering the southern waters from the western waters of Korea are dominant but westward flows are weak relatively. These result suggest that it is difficult for initial C. polykikoides bloom generated in the coastal waters of Goheung to move to the western coast of Korea through Jeju Strait. For spreading model of C. poiyhikoides, the range of generating distribution and the generating time of C. polykikoides bloom in coastal area are similar to those of observation data in the field. Wind is the most important factor in moving and distribution of red tide. Permanent current flowing eastward is also considered to be important factor and tidal current was a little influenced.