• Title/Summary/Keyword: wind wave model

Search Result 321, Processing Time 0.025 seconds

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Kang Sung-Dae;Kimura Fujio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.105-117
    • /
    • 1997
  • The formation mechanism of the vortex streets in the lee of the mountain is investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a Karman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed Karman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Karman vortex from the viewpoint of wave breaking.

  • PDF

CFD simulations of a performance-scaled wind turbine

  • Ye, Maokun;Chen, Hamn-Ching;Koop, Arjen
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.247-265
    • /
    • 2022
  • In the present study, we focus on the CFD simulations for the performance and the rotor-generated wake of a model-scale wind turbine which was designed for wave tank experiments. The CFD simulations with fully resolved rotor geometry are performed using MARIN's community-based open-source CFD code ReFRESCO. The absolute formulation method (AFM) is leveraged to model the rotating wind turbine. The k - ω SST turbulence model is adopted in the incompressible Reynolds Averaged Navier-Stokes (RANS) simulations. First, the thrust and torque coefficients, CT and CP, are calculated at different Tip Speed Ratios (TSR), and the results are compared against the experimental data and previous numerical results. The pressure distribution of the turbine blades at the 70% span is obtained and compared to the results obtained by other tools. Then, a verification study aiming at quantifying the discretization uncertainty of the turbine performance with respect to the grid resolution in the wake region is performed. Last, the rotor-generated wake at the TSR of 7 is presented and discussed.

Wave Height from Satellite Altimetry and Its Comparison with a Model Product

  • Kim, Seung-Bum;Kang, Sok-Kuh
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • We extracted significant wave height (SWH) using several altimeter missions from 1987-1995 over the Northwest Pacific ocean and compared with ECMWF (European Center for Medium- Range Forecast) reanalysis (ERA) products. For large wave heights the ERA wave heights are smaller than the altimetric ones, while for small wave heights the ERA wave heights are larger Comparison in SWH between altimetric derivations and ERA model products shows the discrepancy of 0.46-0.21$\times$SWH (m). Methods for propagating this differences into ERA wind error are presented.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine

  • Hong, Sin-Pyo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.785-794
    • /
    • 2017
  • This paper is concerned with the comparative numerical and experimental study on the natural behavior and the motion responses of a 1/75 moored scale model of a 2.5 MW spar-type floating offshore wind turbine subject to 1-D regular wave. Heave, pitch and surge motions and the mooring tensions are investigated and compared by numerical and experimental methods. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass and three mooring lines are pre-tensioned by means of linear springs. The numerical simulations are carried out by a coupled FEM-cable dynamics code, while the experiments are performed in a wave tank equipped with the specially-designed vision and data acquisition system. Using the both methods, the natural behavior and the motion responses in RAOs are compared and parametrically investigated to the fairlead position, the spring constant and the location of mass center of platform. It is confirmed, from the comparison, that both methods show a good agreement for all the test cases. And, it is observed that the mooring tension is influenced by all three parameters but the platform motion is dominated by the location of mass center. In addition, from the sensitivity analysis of RAOs, the coupling characteristic of platform motions and the sensitivities to the mooring parameters are investigated.

Sloshing characteristics of an annular cylindrical tuned liquid damper for spar-type floating offshore wind turbine

  • Jeon, S.H.;Seo, M.W.;Cho, Y.U.;Park, W.G.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.331-343
    • /
    • 2013
  • The natural sloshing frequencies of annular cylindrical TLD are parametrically investigated by experiment, aiming at the exploration of its successful use for suppressing the structural vibration of spar-type floating wind turbine subject to multidirectional wind, wave and current excitations. Five prototypes of annular cylindrical TLD are defined according to the inner and outer radii of acryl container, and eight different liquid fill heights are experimented for each TLD prototype. The apparent masses near the first and second natural sloshing frequencies are parametrically investigated by measuring the apparent mass of interior liquid sloshing to the acceleration excitation. It is observed from the parametric experiments that the first natural sloshing frequency shows the remarkable change with respect to the liquid fill height for each TLD model with different container dimensions. On the other hand, the second natural sloshing frequency is not sensitive to the liquid fill height but to the gap size, for all the TLD models, convincing that the annular cylindrical sloshing damper can effectively suppress the wave- and wind-induced tilting motion of the spar-type floating wind turbine.

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유 진동수에 관한 연구)

  • Lee, Jung-Tak;Son, Choong-Yul;Lee, Kang-Su;Won, Jong-Bum;Kim, Sang-Ho;Kim, Tae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.434-438
    • /
    • 2006
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of Wind Turbine Jacket Type Tower model, and calculated that the stress values of Thrust Load, Wave Load, Wind Load, Current Loda, Gravity Load, etc., environment evaluation analysis during static Operating Wind Turbine Jacket Type Tower model, carried out of Natural Frequency analysis of total load case to stress matrix, Frequency calculated that calculated Add Natural Frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유진동수에 관한 연구)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.130-135
    • /
    • 2007
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of wind turbine jacket type tower model, and calculated that the stress values of thrust load, wave load, wind load, current loda, gravity load, etc., environment evaluation analysis during static operating wind turbine jacket type tower model, carried out of natural frequency analysis of total load case to stress matrix, frequency calculated that calculated add natural frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

A Study on Probabilistic Reliability Evaluation of Power System Considering Wind Turbine Generators (풍력발전기를 고려한 전력계통의 확률론적인 신뢰도 평가에 관한 연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1491-1499
    • /
    • 2008
  • This paper presents a study on reliability evaluation of a power system considering wind turbine generators (WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. But, reliability evaluation of generating system with wind energy resources is a complex process. While the wind turbine generators can not modelled as two-state model as like as conventional generators, they should be modelled as multi-state model due to wind speed random variation. The methodology for obtaining reliability evaluation index of wind turbine generators is different from it of the conventional generators. A method for making outage capacity probability table of WTG for reliability is proposed in this paper. The detail process is presented using case study of simple system.