• 제목/요약/키워드: wind variation

검색결과 856건 처리시간 0.027초

군집분석을 통한 풍력자원 수평 공간 분포의 연직 변화에 관한 연구 (Study on vertical variation of horizontal wind energy resources distribution using clustering analysis)

  • 김민정;이화운;이순환;김동혁;정우식;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.554-556
    • /
    • 2009
  • Wind classification for exact estimation of wind energy resources was carried out using numerically simulated wind data for three years. The MM5(a fifth-generation Mesoscale Model), developed at Penn State University and the National Center for Atmospheric Research (NCAR), was used to estimate the wind fields in this study. We also use a variant of the K-mean clustering to classify the wind district and define the relation between districts. Wind estimated at surface and 100 m high at Busan area is classified into the 10 and 7 classes, respectively. These discrepancies of wind districts pattern at surface and upper air meteorological data indicates the quantity of wind resources can be changed according to the level of wind data used in estimation. Therefore, the estimation of wind district classification by reasonable wind data is utilized to build the effective policy for wind energy dissemination.

  • PDF

A numerical simulation of flow field in a wind farm on complex terrain

  • Lee, Myungsung;Lee, Seung Ho;Hur, Nahmkeon;Choi, Chang-Koon
    • Wind and Structures
    • /
    • 제13권4호
    • /
    • pp.375-383
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the wind flow around wind-power generation facilities on mountainous area of complex terrain. A digital map of eastern mountainous area of Korea including a wind farm was used to model actual complex terrain. Rotating wind turbines in the wind farm were also modeled in the computational domain with detailed geometry of blade by using the frozen rotor method. Wind direction and speed to be used as a boundary condition were taken from local meteorological reports. The numerical results showed not only details of flow distribution in the wind farm but also the variation in the performance of the wind turbines due to the installed location of the turbines on complex terrain. The wake effect of the upstream turbine on the performance of the downstream one was also examined. The methodology presented in this study may be used in selecting future wind farm site and wind turbine locations in the selected site for possible maximum power generation.

한국동해의 바람응력 분포와 상층구조에 대한 적용 (Wind Stress Distribution and Its Application to the Upper-layer Structure in the East Sea of Korea)

  • 나정열
    • 한국해양학회지
    • /
    • 제23권3호
    • /
    • pp.97-109
    • /
    • 1988
  • 한국 동해의 wind stress와 wind-stress curl의 값을 수산진흥원 정선관측 바람자료를 근거로 하여 계산하였다. 바람에 의한 해수 이용을 염두에 두고 주로 지속적이고 강한 바람을 취해서 구한 월평균 wind stress 값들은 동해 전체에서 구한 기존의 값들과 거의 같았으나 wind-stress curl의 경우는 그 값이 훨씬 크게 나타났다. 이는 동해가 국지적으로 지형적인 영향을 받은 것으로 판단된다. 한편 바람에 의한 상층수의 이동으로 울릉도 부근에는 계절에 관계없이 난수괴(warm core)가 존재 하나 그 위치는 고정되어 있지 않다.

  • PDF

Do Inner Planets Modulate the Solar Wind Velocity at 1 AU from the Sun?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Quite recently, it has been suggested that the interaction of the solar wind with Mercury results in the variation in the solar wind velocity in the Earth's neighborhood during inferior conjunctions with Mercury. This suggestion has important implications both on the plasma physics of the interplanetary space and on the space weather forecast. In this study we have attempted to answer a question of whether the claim is properly tested. We confirm that there are indeed ups and downs in the profile of the solar wind velocity measured at the distance of 1 AU from the Sun. However, the characteristic attribute of the variation in the solar wind velocity during the inferior conjunctions with Mercury is found to be insensitive to the phase of the solar cycles, contrary to an earlier suggestion. We have found that the cases of the superior conjunctions with Mercury and of even randomly chosen data sets rather result in similar features. Cases of Venus are also examined, where it is found that the ups and downs with a period of ~ 10 to 15 days can be also seen. We conclude, therefore, that those variations in the solar wind velocity turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. At least, one should conclude that the solar wind velocity is not a proper observable modulated by inner planets at the distance of 1 AU from the Sun in the Earth's neighborhood during inferior conjunctions.

Allocation of Energy Storage Capacity for Large Wind Farms in Korea using Discrete Fourier Transform

  • Moon, Seung-pil;Labios, Remund;Chang, Byung-hoon;Kim, Soo-yeol;Yoon, Yong-beum
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.377-382
    • /
    • 2016
  • In 2013, a total capacity of 591.3 MW of installed wind power generation was achieved in Korea, with a total of 1,139 MWh of wind energy generated that year. More wind power plants will be installed in the coming years, and it is important to develop methods to reduce the output variability of these resources so as to provide stable power to the power grid of Korea. In this regard, this paper proposes the use of energy storage system (ESS) as a means to stabilize the output variability of wind power plants. Presented in this paper is a method that uses Discrete Fourier Transform (DFT) to determine the ESS capacity needed to provide a stable power output for ancillary services such as frequency regulation, economic dispatch, and emergency reserves. In the first step of the proposed method, four regions (namely, Samdal, Yeongdeok, Yeongyang, and Gangwon) in Korea that had the most wind power generation capacity were selected for analysis. In the second step, the individual and aggregated wind power outputs of the selected regions in 2013 were obtained This information was then used in the third step, where DFT analysis of the power outputs was used to drive the magnitudes of the output variation. And finally, the ESS capacity requirements needed to provide different ancillary services were determined based on the magnitudes of the output variation.

용평 알파인 경기장에서 겨울철 바람의 일변화 및 난류 특성분석 (An Analysis of the Wintertime Diurnal Wind Variation and Turbulent Characteristics over Yongpyong Alpine Slope)

  • 전혜림;김병곤;은승희;이영희;최병철
    • 대기
    • /
    • 제26권3호
    • /
    • pp.401-412
    • /
    • 2016
  • A 3D sonic anemometer has been installed at Yongpyong alpine slope since Oct. 23th 2014 to observe the slope winds and to analyze turbulent characteristics with the change in surface cover (grass and snow) and the synoptic wind strength. Eddy covariance method has been applied to calculate the turbulent quantity after coordinate transformation of a planar-fit rotation. We have carefully selected 3 good episodes in the winter season (23 October 2014 to 28 February 2015) for each category (9 days in total), such as grass and snow covers in case of weak synoptic wind condition, and grass cover of strong synoptic wind. The diurnal variations of the slope winds were well developed like the upslope wind in the daytime and downslope wind in the nighttime for both surface covers (grass and snow) in the weak synoptic forcing, when accordingly both heat and momentum fluxes significantly increased in the daytime and decreased in the nighttime. Meanwhile, diurnal variation of heat flux was not present on the snow cover probably in associated with significant fraction of sunlight reflection due to high albedo especially during the daytime in comparison to those on the grass cover. In the strong synoptic regime, the most dominant feature at Yongpyong, only the southeasterly downslope winds were steadily generated irrespective of day and night with significant increases in momentum flux and turbulent kinetic energy as well, which could suggest that local circulations are suppressed by the synoptic scale forcing. In spite of only one season analysis applied to the limited domain, this kind of an observation-based study will provide the basis for understanding of the local wind circulation in the complex mountain domain such as Gangwon in Korea.

풍력 발전단지의 출력 지령값을 고려한 계통 연계 운영 방안 (A New Control Scheme of Wind Farm Considering P,Q References)

  • 최정현;박진우;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1172-1173
    • /
    • 2008
  • At the moment, the control ability of wind farms is a prime research concern for the grid integration of large wind farms, due to their required active role in the power system. As more wind turbines are installed, the power from wind energy will start to replace conventional generation units and its influence on power systems cannot be neglected. Besides, because of the intermittent nature of wind the output power of wind turbines fluctuates according to wind speed variation. Especially an isolated power system with small capacity such like Jeju needs more systematic solutions and regulations(grid code). This paper presents the idea of approach for centralized operating wind farm strategy to regulate the wind farm power production to the reference power ordered by the system operator. The doubly fed induction generator(DFIG) can control active and reactive power in feasible range. So wind farm comprised of DFIG has the possibility of a controllable component in the power system. The presented wind farm control has a hierarchical structure with both a wind farm control level and a wind turbine control level.

  • PDF

중규모 모델 WRF로부터 모의된 한반도 풍력-기상자원 특성 (Characteristics of a Wind Map over the Korean Peninsula Based on Mesoscale Model WRF)

  • 변재영;최영진;서범근
    • 대기
    • /
    • 제20권2호
    • /
    • pp.195-210
    • /
    • 2010
  • This study uses mesoscale model WRF to investigate characteristics of wind fields in South Korea, a region with a complex terrain. Hourly wind fields were simulated for one year representing mean characteristics of an 11-year period from year 1998 to year 2008. The simulations were performed on a nested grid from 27 km down to 1 km horizontal resolution. Seasonal variation of wind speed indicates that wind is strongest during the spring and winter seasons. Spatial distribution of mean wind speed shows wind energy potential at its peak in mountainous region of Gangwon-do, the east coast, and Jeju Island. Wind speed peaks at night in mountainous and eastern coastal regions, and in the afternoon inland and in the southwestern coastal region. The simulated wind map was verified with four upper-air sounding observations. Wind speed was shown to have a more pronounced overestimation tendency relative to observation in the winter rather than summer. The results of this wind mapping study help identify locations with the highest wind energy potential in South Korea.

Aerodynamic mitigation of wind loads on a large-span cantilevered roof: A combined wind tunnel and CFD analysis

  • Chen Fubin;Wang Weijia;Yang Danqing;Zhenru Shu
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.203-214
    • /
    • 2024
  • Large-span cantilevered roof represents a unique type of structure that is vulnerable to wind loads. Inspired by the need to maximumly reducing the rooftop wind loads, this study examined the feasibility of positioning vented slots on the leading edge, and the effectiveness of such aerodynamic mitigation measures are assessed via both physical and numerical simulations. The reliability of numerical simulation was evaluated via comparisons with the wind tunnel tests. The results indicated that, the variation of venting hole arrangement can cause significant change in the rooftop wind load characteristics. For the cases involved in this study, the maximum reduction of mean and peak wind suction coefficients are found to be 9% and 8% as compared to the original circular slot without venting holes. In addition, the effect of slot shape is also evident. It was shown that the triangular shaped slot tends to increase the wind suction near the leading edge, whereas the hexagonal and octagonal shaped slots are found to decrease the wind suction. In particular, with the installation of octagonal shaped slot, the maximum reduction of wind suction coefficients near the leading edge reaches up to 31% as compared to the circular shaped slot, while the maximum reduction of mean wind suction coefficients is about 30%.

SVR을 이용한 풍력 발전 시스템의 플리커 추정 (Flicker Estimation for Wind Turbine Systems using SVR)

  • 반탄룽;누옌탄하이;김기홍;이동춘
    • 전력전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.309-318
    • /
    • 2010
  • 본 논문은 풍력 터빈에서 발생되는 플리커를 추정하기 위하여 SVR(Support Vector Regression)을 이용한 시뮬레이션 모델을 제시한다. SVR 훈련을 위한 입력은 전압 변동이고 출력은 플리커로 설정한다. 오프라인 훈련을 통해 출력전압과 플리커의 관계가 도출된다. 제안된 기법은 플리커를 추정하는데 필요한 데이터 양을 줄이고 또 연산시간을 감소시킨다. 제안된 알고리즘은 시뮬레이션과 실험을 통해 그 타당성이 검증된다.