• Title/Summary/Keyword: wind variation

Search Result 855, Processing Time 0.028 seconds

Analysis of flow characteristics around the sunroof opening variation with sunroof deflector angle (썬루프 디플렉터 각도에 따른 썬루프 개구부 주변 유동 특성 연구)

  • Lee, Sung Won;Shin, Seongryong;Choi, Eui Sung;Yi, Juwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2018
  • In the present study, flow characteristics and wind noises around the sunroof opening are analyzed variation with panoramic sunroof deflector angle. A mesh deflector is attached to reduce wind noise while a car is driving with the panoramic sunroof opening. A new forward inclined type deflector was invented to improve wind noise. The effect of this new concept of mesh deflector on the open-panoramic flow characteristics and wind noises were studied with CAT (Computer Aided Test) and wind tunnel test, which shows the reduction of open-panoramic wind noises such as sunroof buffeting, sunroof booming, and turbulent noise. Therefore, the forward inclined type deflector can efficiently improve wind noise with the same production cost.

Numerical Experiment on the Variation of Atmospheric Circulation due to Wild Fire (산불 발화에 따른 하층 대기 순환장 변화에 관한 수치 실험)

  • Lee, Hwa-Woon;Tak, Sung-Hoon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2013
  • In order to clarify the impact of wildfire and its thermal forcing on atmospheric wind and temperature patterns, several numerical experiments were carried out using three dimensional atmospheric dynamic model WRF with wildfire parametrization module SFIRE. Since wind can accelerate fire spread speed, the moving speed of fireline is faster than its initial values, and the fireline tends to move the northeast, because of the wind direction and absolute vorticity conservation law associated with driving force induced by terrain. In comparison with non-fire case, the hydraulic jump that often occurs over downwind side of mountain became weak due to huge heat flux originated by surface wildfire and wind pattern over downwind side of mountain tends to vary asymmetrically with time passing. Therefore temporal variation of wind pattern should be catched to prevent the risk of widfire.

Modeling and Voltage Variation Simulation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems (영구자석 동기형 풍력발전시스템 모델링 및 전압변동 시뮬레이션)

  • Kim, Hong-Woo;An, Hae-Joon;Jang, Gil-Soo;Kim, Sung-Soo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.116-123
    • /
    • 2009
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.

Analysis of the Load Contribution of Wind Power and Photovoltaic Power to Power System in Jeju (제주지역 풍력발전 및 태양광발전의 전력계통 부하기여 분석)

  • Myung, Ho-San;Kim, Hyung-Chyul;Kang, Nam-Ho;Kim, Yeong-Hwan;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • As part of the "Carbon free Island 2030" policy, the local government of Jeju Island is currently working to reduce carbon through renewable energy supply. However, renewable energy is difficult to predict due to intermittent characteristics. If the share of renewable energy increase, it is difficult to plan of supply of electricity to grid due to that characteristic of renewable. In this paper analyze the fluctuation rate and the capacity credit of wind power and PV to find out how much wind power and PV contribute to supply of electricity of power system in Jeju. As a result mean value of variation rate of wind power and PV is about 3%, 5% and capacity credit is about 10% and 2% respectively.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

Effects of the Distance between Houses on the Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 동간거리가 풍력계수에 미치는 영향)

  • 이현우;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.76-85
    • /
    • 1993
  • The purpose of this study was to analyze the wind force distribution on the two single-span arched plastic house depending upon the house spacing and wind direction, which may provide the fundamental criteria for the structural design. In order to specify the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients and the drag force coefficients were estimated from the wind tunnel test data. The results obtained are as follows : 1. At the wind direction of 90$^{\circ}$, there was a typical span interval at which the maximum negative pressure was occured at the edge of the inside walls. 2. In the consideration of wind loads, the wind force coefficients estimated from independent single-span arched plastic house should not be directly applied to the structural design on the double houses separated. 3. The average maximum negative wind force on the inside walls was occured at the wind direction of 90$^{\circ}$, and the variations depending on the span intervals was not significant. 4. The average maximum drag force was occured at the wind direction of 300, and the magnitude of drag force was more significant at the first house. As the distance between two houses was increased, the drag force was slightly increased for every wind direction.

  • PDF

Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis (동특성해석을 위한 계통연계 풍력발전 시스템의 모델링)

  • Choo, Yeoun-Sik;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Empirical formulations for evaluation of across-wind dynamic loads on rectangular tall buildings

  • Ha, Young-Cheol
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.603-616
    • /
    • 2013
  • This study is aimed at formulating an empirical equation for the across-wind fluctuating moment and spectral density coefficient, which are needed to estimate the across-wind dynamic responses of tall buildings, as a function of the side ratios of buildings. In order to estimate an empirical formula, wind tunnel tests were conducted on aero-elastic models of the rectangular prisms with various aspect and side ratios in turbulent boundary layer flows. In this paper, criteria for the across-wind fluctuating moment and spectral density are briefly discussed and the results are analyzed mainly as a function of the side ratios of the buildings. Finally, empirical formulas for the across-wind fluctuating moment coefficient and spectral density coefficient according to variation of the aspect ratio are proposed.

Prediction of long-term wind speed and capacity factor using Measure-Correlate-Predict method (측정-상관-예측법을 이용한 장기간 풍속 및 설비이용률의 예측)

  • Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.37-43
    • /
    • 2012
  • Long-term variations in wind speed and capacity factor(CF) on Seongsan wind farm of Jeju Island, South Korea were derived statistically. The selected areas for this study were Subji, having a year wind data at 30m above ground level, Sinsan, having 30-year wind data at 10m above ground level and Seongsan wind farm, where long-term CF was predicted. The Measure-Correlate-Predict module of WindPRO was used to predict long-tem wind characteristics at Seongsan wind farm. Eachyear's CF was derived from the estimated 30-year time series wind data by running WAsP module. As a result, for the 30-year CFs, Seongsan wind farm was estimated to have 8.3% for the coefficien to fvariation, CV, and-16.5% ~ 13.2% for the range of variation, RV. It was predicted that the annual CF at Seongsan wind farm varied within about ${\pm}4%$.