• Title/Summary/Keyword: wind variation

Search Result 858, Processing Time 0.022 seconds

Prediction of Wind Farm Noise with Atmospheric Stability (대기 안정 상태에 따른 풍력 단지 소음 전파 예측)

  • Son, Eunkuk;Lee, Seunghoon;Jeon, Minu;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF

Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction (MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정)

  • Kim, Junbong;Oh, Seungchul;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

Study on Impact of Wind Power in Grid Frequency Quality of Stand-alone Microgrid (독립형 마이크로그리드내 풍력발전출력이 주파수 품질에 미치는 영향 분석)

  • Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • This paper analyzed the influence of wind power fluctuations in grid frequency of a stand-alone microgrid that is hybrid generation system with diesel generator, wind turbine, and Battery Energy Storage System (BESS). The existing island area power system consists of only diesel generators. So the grid frequency can be controllable from load change. But hybrid generation system with Renewable Energy Sources (RES) such as wind energy that has the intermittent output can bring power quality problems. BESS is one of the ways to improve the intermittent output of the RES. In this paper, we analyzed the role of BESS in a stand-alone microgrid. We designed a modelling of wind power system with squirrel-cage induction generator, diesel power system with synchronous generator, and BESS using transient analysis program PSCAD/EMTDC. And we analyzed the variation of the grid frequency according to the output of BESS.

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

Variation of AEP to wind direction variability (풍향의 변동성에 따른 연간에너지 발전량의 변화)

  • Kim, Hyeon-Gi;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, we performed a sensitivity analysis to see how the true north error of a wind direction vane installed to a meteorological mast affects predictions of the annual-average wind speed and the annual energy production. For this study, two meteorological masts were installed with a distance of about 4km on the ridge in complex terrain and the wind speed and direction were measured for one year. Cross predictions of the wind speed and the AEP of a virtual wind turbine for two sites in complex terrain were performed by changing the wind direction from $-45^{\circ}$ to $45^{\circ}$with an interval of $5^{\circ}$. A commercial wind resource prediction program, WindPRO, was used for the study. It was found that the prediction errors in the AEP caused by the wind direction errors occurred up to more than 20% depending on the orography and the main wind direction at that site.

Aerodynamic Characteristics of Neighboring Building Exposed to Twisted Wind

  • Lei Zhou;KamTim Tse;Gang Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.241-263
    • /
    • 2022
  • The conventional wind and twisted-wind effect on aerodynamic properties of neighboring buildings arranged in side-by-side and tandem systems at 2B and 5B spacings are systematically investigated by large eddy simulation. Different physical interactions between different wind profiles and neighboring buildings will be deeply understood. The neighboring-building system under two different types of wind profiles, i.e., conventional wind profile (CWP), twisted wind profiles (TWP) with the maximum twisted angle of 30°, is used to evaluate the variation of physical mechanism between wind and buildings. Aerodynamic characteristics including mean and RMS pressure coefficient, and velocity field were systematically analyzed and compared between different scenario. It was found that the distribution of mean pressure, root-mean-square x velocity and the streamline of wind flow for TWP greatly deviated from CWP, and the effect of TWP on the downstream building, was drastically different from that of CWP, such as the size of vortexes after the lower stream building being bigger when exposed to TWP, and the mean pressure distribution on the building surfaces are also different. Moreover, evidence of buildings arranged in side-by-side and tandem configurations having interchangeable properties under TWP was also discovered, that two buildings being arranged side-by-side exposed to TWP could be identified as being arranged in tandem with a different wind twist angle, or vice versa.

The Variation of $SO_2$ Concentration According to Wind Speed in Urban Area (도심지역에서의 풍속에 따른 $SO_2$ 농도변화)

  • 羅振均
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.97-105
    • /
    • 1989
  • Recently, many studies on air quality prediction models have been performed to develope new ones. The purpose of the study is to obtain a method to predict $SO_2$ concentration simply in urban area using hour-to-hour meteorological data such as the wind speed, the incoming solar radiation, and the cloud coverages. The relationships between with speed and $SO_2$ concentrations are plotted in flgures. Predicted concentration curves are obtained for equation C=b/(1+au).

  • PDF

Global MHD Simulation of the Earth's Magnetosphere Event on October, 1999

  • PARK KYUNG SUN;OGINO TATSUKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.317-319
    • /
    • 2001
  • The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.

  • PDF