• Title/Summary/Keyword: wind turbine control

Search Result 468, Processing Time 0.028 seconds

A Wind Turbine Simulator for Doubly-Fed Induction-type Generator with Automatic Operation Mode Change during Wind Speed Variation (가변 풍속시 운전모드 절환을 고려한 이중여자 유도형 풍력발전기의 시뮬레이터)

  • Song, Seung-Ho;Sim, Dong-Joon;Jeong, Byoung-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.349-360
    • /
    • 2006
  • Controller for doubly-fed induction-type wind generation system should be designed with mechanical power on blade. The controller in this paper consists of upper level controller and lower level controller. The upper level controller determines operating modes according to mechanical input power and calculates proper reference values. There are 4 operating modes - minimum speed control, variable torque control, torque limit control and idle mode. The lower level controller performs current regulated PWM control of rotor-side converter and grid-side inverter. A wind turbine simulator is implemented using doubly-fed induction-type generator and DSP based back-to-back converter to verify the performance of designed controller experimentally.

A Wind Turbine Simulator with Variable Torque Input (풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터)

  • Jeong, Byeong-Chang;Song, Seung-Ho;No, Do-Hwan;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

The Analysis and Study on Operation Strategy of Grid-connected Series Small Wind Turbine System (계통연계형 직렬운전 소형풍력발전시스템의 해석 및 운전방안 연구)

  • Kim, Chang-Ha;Ku, Hyun-Keun;Son, Yung-Deug;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • This paper proposes an analysis and operation strategy of a grid-connected wind turbine system using a diode rectifier. The currents of generators are the same as that of a small wind turbine system. Therefore, the analysis of generator torque is required as opposed to an analysis of blade speed. In this paper, the appropriate MPPT control method is proposed to control generator torque. Usefulness of the proposed operation strategy is verified by simulations and experiments.

Speed Control of Darrieus Wind Turbine for Load-variation (다리우스 풍력터빈의 부하변동에 따른 속도제어)

  • 오철수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper is dealing with speed control of Darrieus Wind Turbine, which can be figured out from torque equation. The operating point of Darrieus Wind Turbine can be found from speed-torque curve, which is either stable or instable. The transfer of operating point due to variation of wind speed and generating power is shown in this paper.

  • PDF

Development of pitch control system for 2WM wind turbine (2MW급 풍력발전용 블레이드 피치 제어 시스템 개발)

  • Choi, Hee-young;Ryu, Ji-su;Lee, Sang-ho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.285-286
    • /
    • 2011
  • Wind turbine system is converting wind energy into electric energy. In nature, torque of the blade is nonlinear function. To get a high quality electric power, system needs control of blade angle. The control of a blade is divided into a stall regulation type and a pitch control type. Pitch control type is more expensive and complicated, but it can make torque of the blade in accordance with variable wind. This paper shows 2MW pitch control system's hardware and electric part.

  • PDF

Design of Test Site for Large-Scale Wind Turbine Performance Verification (초대형 풍력터빈 시험을 위한 실증시험장 설계)

  • Sang-Man Kim;Tae-Yoon Jeong;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.397-404
    • /
    • 2023
  • This paper designs a wind turbine test site based on international regulations for the certification of wind turbine prototypes. The maximum height of the meteorological mast installed at the test site is 140m, and power facilities capable of testing up to three wind turbines of 5MW or more are installed. The weather resources measured at the mast can be recorded and analyzed using a monitoring system. Wind turbine manufacturers can use this test site during the certification period, and the installed wind turbines can be used for continuous power generation projects. Therefore, this test site can provide fundamental data for measuring the long-term performance and durability of wind turbines, which can be used to improve models or develop new wind turbines.

Concept and Prelimimary Design of Large Offshore wind turbine system (해상용 대형 풍력 발전 시스템의 개념 설계와 기본 설계에 관한 연구)

  • Jung Ji-Young;Shin Hyung-Ki;Park Kwang-Kun;Choi Woo-Young;Park Ji-Woong;Kim Ho-Geon;Lee Soo-Gab;Smith Robert Rawlinson;Jamieson Peter;Quarton David
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.241-244
    • /
    • 2006
  • Recently wind turbines become large, constructed as farms and going out to offshore. Different design approach from onshore is needed for offshore wind turbine. At this paper concept and preliminary design of an offshore wind turbine of 3MW rated power are performed. The concept design started from modelling of the generator and gearbox. With these modelling the optimum specifications was acquired. Integrated type of drive train is designed with all parts are mounted on the tower top as the offshore maintenance strategy. At the preliminary stage control system, power production algorithm and safety system are designed. Load calculation is also performed. The 3MW offshore wind turbine concept/preliminary design and the process of design are obtained as results.

  • PDF

SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계)

  • Park, Hyung-Moo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

A Study of a Novel Wind Turbine Concept with Power Split Gearbox

  • Liu, Qian;Appunn, Rudiger;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • This paper focuses on the design and control of a new concept for wind turbines with a planetary gearbox to realize a power split. This concept, where the generated wind power is split into two parts, is to increase the utilization of the wind power and may be particularly suitable for large scale off-shore wind turbines. In order to reduce the cost of the power electronic devices, a synchronous generator, which is driven by the planetary gear, is directly connected to the power grid without electronic converter. A servo drive, which functions as the control actuator, is connected to the power grid by a power electronic converter. With small scale power electronic device, the current harmonics can also be reduced. The speed of the main shaft is controlled to track the optimal tip speed ratio. Meanwhile the speed of the synchronous generator is controlled to stay at the synchronous speed. The minimum rated power of the servo motor and the converter, is studied and discussed in this paper. Different variants of the wind turbine with a planetary gear are also compared. The controller for optimal tip speed ratio and synchronous speed tracking is given.

Influence of Asymmetric Aerodynamic Loading on Multiple Unit Floating Offshore Wind Turbine (부유식 다수 풍력 발전기에 작용하는 비대칭 공력 하중의 영향)

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The present study developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain, considering the multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to make it suitable for multiple turbines. For the hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARM3D program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. To investigate the effect of asymmetric aerodynamic loading on the global performance and mooring line tensions of the MUFOWT, one turbine failure case with a fully feathered blade pitch angle was simulated and checked. The aerodynamic interference between adjacent turbines, including the wake effect, was not considered in this study to more clearly demonstrate the influence of the asymmetric aerodynamic loading on the MUFOWT. The analysis shows that the unbalanced aerodynamic loading from one turbine in MUFOWT may induce appreciable changes in the performance of the floating platform and mooring system.