• Title/Summary/Keyword: wind tunnel tests

Search Result 438, Processing Time 0.029 seconds

Estimation of Topographic Effects over 3-Dimensional Hills with Different Slopes through Wind Tunnel Tests (경사가 다른 3차원 산악지형에서의 풍동실험을 통한 풍속할증평가)

  • Cho, Kang-Pyo;Cheong, Myung-Chae;Cho, Gi-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.379-386
    • /
    • 2007
  • In this paper, topographic factors over 3-dimensional hills were estimated through wind tunnel tests. Topographic models having five different slopes of $5.71^{\circ}, \;11.31^{\circ},\;16.70^{\circ},\;21.80^{\circ}$, and $26.57^{\circ}$ which were based on Korean Building Code(KBC(2005), were made for wind tunnel tests. From the result of wind tunnel tests, topographic factors over 3-dimensional hills were obtained at various locations, and the ranges of topographic effects were decided. The ranges of topographic effects was whole area of the hills in the horizontal ranges and heights of 3.5 times of the hills in the vortical ranges. Topographic effects was large at the top of hills, and wind velocity was increased 57% over hill of $5.71^{\circ}$, 75% over hill of $11.31^{\circ}$, 79% over hill of $16.70^{\circ}$, 81% over hill of $21.80^{\circ}$, and 61% over hill of $26.57^{\circ}$. Wind velocity was bigger over surface of across-wind direction of hills than one over surface of wind direction of hills, and wind velocity was increased $10{\sim}30%$ at locations of across-wind direction.

Aerodynamic Characteristic Analysis of the Darrieus Turbine Using Double Multiple Streamtube Model (이중 다류관 모델을 이용한 Darrieus 터어빈의 공기역학적 특성 해석)

  • Kim, Keon-Hoon;Park, Kyung-Ho;Chung, Hun-Saeng
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.47-56
    • /
    • 1990
  • The aerodynamic performances of Darrieus wind turbine were studied through the wind tunnel model tests and its analytical aerodynamic streamtube model. Hence, analytical streamtube model which is based on momentum and blade element theory is considered and the formulated model was generalized in non-dimensional type to predict the aerodynamic characteristics of Darrieus wind turbine. The analytical model was justified through the wind tunnel model tests for several experimental conditions but in the limited rages. These satisfactory comparative studies between the wind tunnel tests and the analytical predictions can be utilized for the basic reliable design of Darrieus wind turbine.

  • PDF

Wind pressure characteristics for a double tower high-rise structure in a group of buildings

  • Tse, K.T.;Wang, D.Y.;Zhou, Y.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.491-515
    • /
    • 2013
  • Wind pressure characteristics on a double tower high-rise structure, which is disturbed by surrounding buildings, were investigated using large eddy simulation (LES) and 1:300 scale wind tunnel experiments. The computational simulation technique and wind tunnel experimental technique were described in detail initially. Comparisons of computational results with the experimental data have subsequently been carried out to validate the reliability of LES. Comparisons have been performed in detail for the mean and fluctuating pressure coefficients. Detailed explanations of each comparison were given in the paper. To study further on the pressure coefficients on the building surfaces, parametric studies on shape coefficient and spatial correlation were performed and investigated. The numerical and experimental results presented in this paper advance understanding on wind field around buildings and the application of LES and wind tunnel tests.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

Wind characteristics in the high-altitude difference at bridge site by wind tunnel tests

  • Zhang, Mingjin;Zhang, Jinxiang;Li, Yongle;Yu, Jisheng;Zhang, Jingyu;Wu, Lianhuo
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.547-558
    • /
    • 2020
  • With the development of economy and construction technology, more and more bridges are built in complex mountainous areas. Accurate assessment of wind parameters is important in bridge construction at complex terrain. In order to investigate the wind characteristics in the high-altitude difference area, a complex mountain terrain model with the scale of 1:2000 was built. By using the method of wind tunnel tests, the study of wind characteristics including mean wind characteristics and turbulence characteristics was carried out. The results show: The wind direction is affected significant by the topography, the dominant wind direction is usually parallel to the river. Due to the sheltering effect of the mountain near the bridge, the wind speed and wind attack angle along the bridge are both uneven which is different from that at flat terrain. In addition, different from flat terrain, the wind attack angle is mostly negative. The wind profiles obey exponential law and logarithmic law. And the fitting coefficient is consistent with the code which means that it is feasible to use the method of wind tunnel test to simulate complex terrain. As for turbulence characteristics, the turbulence intensity is also related to the topography. Increases sheltering effect of mountain increases the degree of breaking up the large-scale vortices, thereby increasing the turbulence intensity. Also, the value of turbulence intensity ratio is different from the recommended values in the code. The conclusions of this study can provide basis for further wind resistance design of the bridge.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Aerodynamic Damping Analysis of a Vane-type Multi-Function Air Data Probe

  • Lee, Yung-Gyo;Park, Young-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • Configuration design, analysis, and wind tunnel test of a vane-type multi-function air data probe (MFP) was described. First, numerical analysis was conducted for the initial configuration of the MFP in order to investigate aerodynamic characteristics. Then, the design was modified to improve static and dynamic stability for better response characteristics. The modified configuration design was verified through wind tunnel tests. The test results are also used to verify the accuracy of the analytical method. The analytically estimated aerodynamic damping provided by the Navier-Stokes equation solver correlated well with the wind tunnel test results. According to the calculation, the damping coefficient estimated from ramp motion analysis yielded a better correlation with the wind tunnel test than pitch oscillation analysis.

A Study on the Estimations of Maximum Lift Coefficients of a Light Airplane (경비행기의 최대양력계수 추정에 대한 연구)

  • Lee, Jung-Hoon;Yoo, Si-Yoong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.762-767
    • /
    • 2008
  • Estimated values for maximum lift coefficients of a light airplane, ChanGong-91, derived from an analytical method using a test database, a computational fluid dynamic method, a wind tunnel test, and a flight test are compared. The DATCOM method and VSAERO code are applied as the analytical method and the computational fluid dynamic method, respectively, in order to estimate the maximum lift coefficients of a light airplane. The wind tunnel test is conducted using a 1/14.5 scaled model installed in a closed circuit type wind tunnel. For the flight test approach, the wings-level power-off stall tests are performed to obtain the maximum lift coefficients. As a point of reference for the flight test results of the maximum lift coefficients, the differences of both estimates derived from the DATCOM method and the wind tunnel test data are smaller than those derived from VSAERO.

  • PDF

Unsteady galloping of sharp-edged bluff bodies: experimental observations on the effect of the wind angle of attack

  • Chen, Cong;Dai, Bingyu;Wieczorek, Niccolo;Unglaub, Julian;Thiele, Klaus
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.255-268
    • /
    • 2022
  • Light-weight or low-damped structures may encounter the unsteady galloping instability that occurs at low reduced wind speeds, where the classical quasi-steady assumption is invalid. Although this unsteady phenomenon has been widely studied for rectangular cross sections with one side perpendicular to the incidence flow, the effect of the mean wind angle of attack has not been paid enough attention yet. With four sectional models of different side ratios and geometric shapes, the presented research focuses on the effect of the wind angle of attack on unsteady galloping instability. In static tests, comparatively strong vortex shedding force was noticed in the middle of the range of flow incidence where the lift coefficient shows a negative slope. In aeroelastic tests with a low Scruton number, the typical unsteady galloping, which is due to an interaction with vortex-induced vibration and results in unrestricted oscillation initiating at the Kármán vortex resonance wind speed, was observed for the wind angles of attack that characterize relatively strong vortex shedding force. In contrast, for the wind angles of attack with relatively weak shedding force, an "atypical" unsteady galloping was found to occur at a reduced wind speed clearly higher than the Kármán-vortex resonance one. These observations are valid for all four wind tunnel models. One of the wind tunnel models (with a bridge deck cross section) was also tested in a turbulent flow with an intensity about 9%, showing only the atypical unsteady galloping. However, the wind angle of attack with the comparatively strong vortex shedding force remains the most unfavorable one with respect to the instability threshold in low Scruton number conditions.