• Title/Summary/Keyword: wind tunnel tests

Search Result 441, Processing Time 0.025 seconds

Impacts of wind shielding effects of bridge tower on railway vehicle running performance

  • Wu, Mengxue;Li, Yongle;Zhang, Wei
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • When railway vehicles run by towers of long span bridges, the railway vehicles might experience a sudden load-off and load-on phenomenon in crosswind conditions. To ensure the running safety of the railway vehicles and the running comfort of the passengers, some studies were carried out to investigate the impacts of sudden changes of aerodynamic loads on moving railway vehicles. In the present study, the aerodynamic coefficients which were measured in wind tunnel tests using a moving train model are converted into the aerodynamic coefficients in the actual scale. The three-component aerodynamic loads are calculated based on the aerodynamic coefficients with consideration of the vehicle movement. A three-dimensional railway vehicle model is set up using the multibody dynamic theory, and the aerodynamic loads are treated as the inputs of excitation varied with time for kinetic simulations of the railway vehicle. Thus the dynamic responses of the railway vehicle passing by the bridge tower can be obtained from the kinetic simulations in the time domain. The effects of the mean wind speeds and the rail track positions on the running performance of the railway vehicle are discussed. The three-component aerodynamic loads on the railway vehicle are found to experience significant sudden changes when the vehicle passes by the bridge tower. Correspondingly, such sudden changes of aerodynamic loads have a large impact on the dynamic performance of the running railway vehicle. The dynamic responses of the railway vehicle have great fluctuations and significant sudden changes, which is adverse to the running safety and comfort of the railway vehicle passing by the bridge tower in crosswind conditions.

Development of Servo Type Angle-of-Attack Sensor for UAV (무인항공기용 서보형 받음각센서 개발)

  • Park, Mi-Hyun;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young;Park, Choon-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.511-517
    • /
    • 2009
  • A servo type angle of attack sensor using the null-seeking method is designed and its characteristics are analyzed in this study. Angle-of-attack in the null-seeking method is given by the probe rotation angle with respect to the body reference line when pressure difference measured in two holes on the probe becomes zero. This method provides highly accurate and uniform angle-of-attack measurements over all range. Hence, this kind of angle-of-attack sensor is adequate for unmanned aerial vehicles(UAVs). In this paper, we first analyze the requirements for developing angle-of-attack sensors. And the servo type angle-of-attack sensor is then designed and fabricated. The on-board angle-of-attack calculation algorithm is also developed. Finally, the characteristics of the developed angle-of-attack sensor are identified through MATLAB Simulink and wind tunnel tests.

Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft (PARWIG선의 공력특성에 관한 풍동실험)

  • H.H. Chun;J.H. Chang;K.J. Paik;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.57-68
    • /
    • 2000
  • The Power Augmented Ram(PAR) effect, which blows the down stream of the propellers into the underside of the wings and hence increases the pressure between the lower surface of the wings and the sea surface, is known significantly to enhance the performance of the WIG concept by reducing the take-off and landing speeds. The aerodynamic characteristics of a 20 passenger PARWIG are investigated by wind tunnel tests with the 1/20 scale model. The efflux of the forward mounted propellers are simulated by jet flows with a blower and duct system. The lift, drag, and pitch moment of the model with various ground clearances, angles of attack and flap angles are measured for the various jet velocities, jet nozzle angles, horizontal and vertical positions of the nozzle, and the nozzle diameters. The aerodynamic characteristics of the PARWIG due to these parametric changes are compared and pertinent discussions are included. It is shown that the proper use of the PAR can increase the lift coefficient of as much as up to 4.

  • PDF

Prevention of Exhaust Gas Back Flow in Large Container Carriers (대형 컨테이너선의 배기가스 역류 개선 방안 연구)

  • Yang, Jiman;Gyea, Sangkyoung;Yun, Jeomjin;Noh, Hyeonseok;Cho, Daehwan;Choi, Jooyol
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.30-34
    • /
    • 2013
  • Prevention of exhaust gas back flow becomes a great interest to shipyards and shipowners in large container carriers because exhaust gas pollutes cargoes, flows back into the deck house and the engine room area through fresh air intakes and fan rooms, gives harmful damages to the crew's health and also gives thermal damages to electric equipments on the navigation deck. The phenomena of exhaust gas back flow has been studied with the analysis of sea trial records and wind tunnel tests and the height of the exhaust gas pipe, the front area of the deck house, the inflow speed and the position of the radar mast platform has been confirmed as the principal factors of exhaust gas back flow phenomena. The simple empirical formula to estimate exhaust gas back flow phenomena and the design guidances of exhaust gas related structures on deck has been introduced. In future, parametric studies for the exhaust gas back flow factors will be carried out with the CFD analysis. The results of this study will be the guide for development of the prevention method of exhaust gas back flow phenomena for large container carriers.

  • PDF

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

강제진동 풍동시험을 통한 비행선의 동안정성 분석

  • Chang, Byeong-Hee;Ok, Ho-Nam;Lee, Yung-Gyo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • An airship is statically unstable, because it has no wing, comparatively small tail and large hull. Hence, an accurate prediction of dynamic stability is critical. In this study, dynamic stability data of the Mid-Size Airship is acquired through forced oscillation wind tests. The test was done in BAR LAMP which is Birhle Applied Research Inc's facility located in Germany. The test was composed with 16 static runs and 26 dynamic runs. As a result, dynamic characteristics of the airship depends on sideslip angle, angular rate and its direction as well as angle of attack. Generally, it is obtained that 3 directional moments have damping, but normal force, side force, and cross-derivatives are unstable. The dynamic derivatives are not sensitive to control surfaces, but have nonlinear dependency on sideslip angle.

  • PDF

CFD practical application in conceptual design of a 425 m cable-stayed bridge

  • Nieto, F.;Hernandez, S.;Jurado, J.A.;Baldomir, A.
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.309-326
    • /
    • 2010
  • CFD techniques try to find their way in the bridge engineering realm nowadays. However, there are certain fields where they offer superior performance such as conceptual bridge design and bidding design. The CFD studies carried out for the conceptual design of a 425 m length cable-stayed bridge are presented. A CFD commercial package has been employed to obtain for a set of cross-sections the aerodynamic coefficients considering 2D steady state. Additionally, for those cross-sections which showed adequate force coefficients, unsteady 2D simulations were carried out to detect the risk of vortex shedding. Based upon these computations the effect on the aerodynamic behavior of the deck cross-section caused by a number of modifications has been evaluated. As a consequence, a new more feasible cross-section design has been proposed. Nevertheless, if the design process proceeds to a more detailed step a comprehensive set of studies, comprising extensive wind tunnel tests, are required to better find out the aerodynamic bridge behavior.

Aerodynamics of an intercity bus

  • Sharma, Rajnish;Chadwick, Daniel;Haines, Jonathan
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.257-273
    • /
    • 2008
  • A number of passive aerodynamic drag reduction methods were applied separately and then in different combinations on an intercity bus model, through wind tunnel studies on a 1:20 scale model of a Mercedes Benz Tourismo 15 RHD intercity bus. Computational fluid dynamics (CFD) modelling was also conducted in parallel to assist with flow visualisation. The commercial CFD package $CFX^{TM}$ was used. It has been found that dramatic reductions in coefficient of drag ($C_D$) of up to 70% can be achieved on the model using tapered and rounded top and side leading edges, and a truncated rear boat-tail. The curved front section allows the airflow to adhere to the bus surfaces for the full length of the vehicle, while the boat-tails reduce the size of the low pressure region at the base of the bus and more importantly, additional pressure recovery occurs and the base pressures rise, reducing drag. It is found that the CFD results show remarkable agreement with experimental results, both in the magnitude of the force coefficients as well as in their trends. An analysis shows that such a reduction in aerodynamic drag could lead to a significant 28% reduction in fuel consumption for a typical bus on intercity or interstate operation. This could translate to a massive dollar savings as well as significant emissions reductions across a fleet. On road tests are recommended.

Spatial flow structure around a smooth circular cylinder in the critical Reynolds number regime under cross-flow condition

  • Raeesi, Arash;Cheng, Shaohong;Ting, David S.K.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.221-240
    • /
    • 2008
  • The spanwise flow structure around a rigid smooth circular cylinder model in cross-flow has been investigated based on the experimental data obtained from a series of wind tunnel tests. Surface pressures were collected at five spanwise locations along the cylinder over a Reynolds number range of $1.14{\times}15^5$ to $5.85{\times}10^5$, which covered sub-critical, single-bubble and two-bubble regimes in the critical range. Separation angles were deduced from curve fitted to the surface pressure data. In addition, spanwise correlations and power spectra analyses were employed to study the spatial structure of flow. Results at different spanwise locations show that the transition into single-bubble and two-bubble regimes could occur at marginally different Reynolds numbers which expresses the presence of overlap regions in between the single-bubble regime and its former and later regimes. This indicates the existence of three-dimensional flow around the circular cylinder in cross-flow, which is also supported by the observed cell-like surface pressure patterns. Relatively strong spanwise correlation of the flow characteristics is observed before each transition within the critical regime, or formation of first and second separation-bubbles. It is also noted that these organized flow structures might lead to greater overall aerodynamic forces on a circular cylinder in cross-flow within the critical Reynolds number regime.