• Title/Summary/Keyword: wind tunnel experiments

Search Result 225, Processing Time 0.031 seconds

Experimental Study on the Static Stability of a Sounding Rocket Model in the Supersonic Wind Tunnel (과학로켓 모델의 정적 안정성에 대한 초음속풍동 실험연구)

  • Lee, Sang-Hyun;Cho, Hwan-Kee;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.856-861
    • /
    • 2010
  • In this work, experiments on hybrid sounding rocket were conducted to investigate the aerodynamic characteristics and analyze longitudinal static stability. Tests were performed on 1/10 scale models of sounding rocket through Mach number ranging from 1.75 to 2.5 and for angle of attack from $0^{\circ}$ to $6^{\circ}$. Aerodynamic forces and moments were measured by means of a 4 component internal balance. With measured forces and moments, static stability characteristics of rocket were calculated. Tests were made for three models with different length to determine the effect of body length. The visualization of shock waves was carried out by Schlieren optical system to observe variations of shock waves with Mach number and angle of attack.

Measurements of the Pitch Dynamic Stability Derivatives of a Standard Dynamics Model Using a Forced Vibration Technique (강제진동기법을 이용한 표준동역학 모델의 피치 동안정미계수측정)

  • Cho, Hwan-Kee;Kim, Seung-Pil;Baek, Seung-Woock;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.489-495
    • /
    • 2007
  • An experimental study was carried out in order to measure the pitch dynamic stability derivatives of a standard dynamics model in a low-speed wind tunnel. When a trigger signal is generated, the aircraft model starts oscillation with constant amplitudes and frequencies provided by DC electrical servomotor. The measured data are simultaneously recorded on a data recorder for 25 cycles of the model oscillation. The Phase shift needed to compute the dynamic stability derivatives is determined by calculating differences between the peak values of the input and output signals from the dynamic stability balance. Stabilator effects on the stability derivatives were also investigated with deflection angles. Although the driving apparatus and experimental equipments manufactured creatively for this study are different from other experiments, the variational trend of dynamic stability derivatives with the angle of attack is in a good accordance with the results of TPI, NAE, and FFA.

Combined Effects of Sideslip and AOA on the Vortical Flow of Delta Wing (삼각날개 와류장에서의 옆미끄럼과 받음각의 복합효과)

  • Lee, Gi Yeong;Son, Myeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.17-24
    • /
    • 2003
  • This paper presents results from steady wind tunnel test conducted on a $65^{\circ}$ delta wing at a root chord Reynolds number of $1.76{\times}10^6$. In these experiments, the wing was instrumented with 188 pressure taps, conjunction with powerful multi-channel data logging system, allowed the wing upper surface pressure distribution to be measured. Analysis indicates that the wing upper surface distribution can provide considerable insight into the comvined aerodynamic effects of angle of attack and sideslip on the wing. In a sideslip condition, the strength of the vortex on the windward side is much stronger than that of leeward side. This asymmetric pressure disstribution betwwen each side of wings result in a negative value of rolling moment. However, at a certatin range of angle of attck and sideslip angle(${\alpha}$=$24^{\circ}{\sim}36^{\circ}C$, ${\beta}$=$-5^{\circ}{\sim}-15^{\circ}C$) abrupt change of sign of rolling monent, rolling monent reversal, was observed.

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet (450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 1984
  • Turbulent jet flow has been studied in many ways; a plane jet, a rectangular jet, an annular jet, a round jet, a wall jet, a parallel jet, a valve jet, a cross jet, a slit jet and etc. In this report, a 45.deg. cross jet flow was tried by using two same dimensioned nozzels(dia..phi.20)which were set up at the exit of the subsonic wind tunnel. Each jet flows to the direction of 22.5.deg. to the axis of downstream of the mixed flow. The centerline of each jet meets at the distance of 217.3mm and their mixing flow could be imagined to develop beyond that distance, so the measurement was effectuated at X/X$_{0}$=1.2-1.5. The section of the mixed flow a elliptic circle which is formed by the 22.5.deg. inclined flows to the X direction. This experimental study aimed at the investigation of the turbulent mixing process of two jets; the mean velocities, the turbulent shear stresses, the correlation coefficients, and the momentum were respectively measured. The mean velocity distribution profiles of the down-stream component measured in the Y direction coincide well with the empirical equation of Gortler and those measured in the Z direction agree with the equation of H. Schlichting. Other mean velocities V over bar and W over bar components were randomly distributed. The higher values with same order of the intensity of turbulence were largely distributed at the central part of the flow. The momentum was decreased up to 70% by the shock losses and the development of intense turbulences, but it kept its value constantly beyond X/d=14. Two-channel hot-wire anemometer systems (model 1050 series), X-type hot-wire made of tungsten (dia. .phi.e.mu.m, long 3mm, model 0252 T5), a computer(model HP 9845B0, and a plotter (model HP 9872C) were used for the experiments and the analyses.s.

Experimental contribution analysis of external aeroacoustic noise sources to interior noise of automobile (자동차 외부 공기음향 소음원들의 실험적 실내 기여도 분석 기술 개발)

  • Lee, Myung Han;Ih, Kang Duck;Hwang, Seongil;Kim, Yong-Joe
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.300-308
    • /
    • 2018
  • The contribution analysis of various external aeroacoustic noise sources to interior noise is important, enabling to design an automobile with a low interior noise level. With a new technique, the CD (Cholesky Decomposition), it is proposed to decompose an overall interior noise spectrum into multiple spectra, each representing the contribution of a specific noise source to the interior noise. In order to validate this method, three kinds of experiments were conducted. Furthermore, it is proposed to improve the CD-based contribution analysis method to be integrated with existing exterior microphone arrays in the wind tunnel. This method was validated with an experiment with two speakers.

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.

An experimental study on the flow characteristics of a supersonic turbine with the cascade positions (익렬 위치에 따른 초음속 터빈의 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.265-271
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments were performed to find the flow characteristics of a supersonic turbine with the cascade positions and to find a factor of the expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. The flow was visualized by a Z-type Schlieren system. The static pressures at the turbine cascade inlet and outlet were measured by pressure transducers and a pressure scanner. Also, The total pressures at the turbine cascade back flow were measured. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions of the supersonic turbine were observed. And the flow characteristics in the supersonic turbine with the cascade positions were observed.

  • PDF

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.