• Title/Summary/Keyword: wind static

검색결과 433건 처리시간 0.022초

Grid-Connected Dual Stator-Winding Induction Generator Wind Power System for Wide Wind Speed Ranges

  • Shi, Kai;Xu, Peifeng;Wan, Zengqiang;Bu, Feifei;Fang, Zhiming;Liu, Rongke;Zhao, Dean
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1455-1468
    • /
    • 2016
  • This paper presents a grid-connected dual stator-winding induction generator (DWIG) wind power system suitable for wide wind speed ranges. The parallel connection via a unidirectional diode between dc buses of both stator-winding sides is employed in this DWIG system, which can output a high dc voltage over wide wind speed ranges. Grid-connected inverters (GCIs) do not require booster converters; hence, the efficiency of wind energy utilization increases, and the hardware topology and control strategy of GCIs are simplified. In view of the particularities of the parallel topology and the adopted generator control strategy, we propose a novel excitation-capacitor optimization solution to reduce the volume and weight of the static excitation controller. When this excitation-capacitor optimization is carried out, the maximum power tracking problem is also considered. All the problems are resolved with the combined control of the DWIG and GCI. Experimental results on the platform of a 37 kW/600 V prototype show that the proposed DWIG wind power system can output a constant dc voltage over wide rotor speed ranges for grid-connected operations and that the proposed excitation optimization scheme is effective.

A Study on the Deformation Characteristics of the Roof Signboard Size in Wind Pressure Formation (풍압 형성에 따른 옥상광고판 크기별 특성에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권1호
    • /
    • pp.401-408
    • /
    • 2019
  • This study numerically examined the maximum wind pressure distribution of a billboard on the roof of a middle-rise building. The deformation caused by the maximum wind pressure was examined. For the numerical analysis, the signboard was assumed to be installed on $(b)20m{\times}(d)10m{\times}(h)$ buildings. The maximum wind pressure was measured using four models with the standard model and different sizes of the signboard. The numerical analysis showed that the horizontal deformation predominantly occurs as the shape of the signboard becomes closer to a rectangle, and high wind pressure and deformation occur at the corners of both ends. As the height of the signboard increases, vertical deformation predominantly occurs, and static pressure forms on the backside. When the height is lower than the width of the signboard, the wind pressure is concentrated on the center of the roof. Therefore, the distribution of the maximum wind pressure is stable, and the effect of the wind pressure is relatively low as the height-to-width ratio approaches 1.

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • 제31권1호
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • 제15권3호
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

Static Wind Tunnel Test of Smart Un-manned Aerial Vehicle(SUAV) for TR-S2 Configuration (스마트 무인기 TR-S2 형상의 정적 풍동시험)

  • Choi Sungwook;Cho Taehwan;Chung Jindeog
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제29권6호
    • /
    • pp.755-762
    • /
    • 2005
  • To evaluate the aerodynamic efficiency of TR-S2 configuration designed by SUDC, wind tunnel tests of $40\%$ scaled model were done in KARI LSWT. The aerodynamic characteristics of plain and Semi-Slotted Flaperon were compared, and vortex generators were installed to improve flow pattern along the wing surface. Effects of the control surface such as elevator, rudder, aileron, and incidence angle of horizontal tail are measured for various testing conditions. Test results showed that Semi-Slotted Flaperon produced more favorable lift, lift/drag, and stall margins and application of vortex generator would be best choice to enhance wing performance. Longitudinal, lateral and directional characteristics of TR-S2 were found to be stable for the pitch and yaw motions.

Translation method: a historical review and its application to simulation of non-Gaussian stationary processes

  • Choi, Hang;Kanda, Jun
    • Wind and Structures
    • /
    • 제6권5호
    • /
    • pp.357-386
    • /
    • 2003
  • A number of methods based on various ideas have been proposed for simulating the non-Gaussian stationary process. However, these methods have some limitations. This paper reviewed several simulation methods based on the translation method using logarithmic and polynomial functions, which have emerged in the history of statistics and in the field of civil engineering. The applicability of each method is discussed from the viewpoint of the reproducibility of higher order statistics of the object function in the simulated sample functions, and examined using pressure signals measured from wind tunnel experiments for various shapes of buildings. The parameter estimation methods, i.e. the method of moments and quantile plot, are also reviewed, and the useful aspects of each method are discussed. Additionally, a simple worksheet for parameter estimation is derived based on the method of moment for practical application, and the accuracy is discussed comparing with a set of previously proposed formulae.

Power Quality Analysis Considering Contingency of STATCOM in Jeju Power Grid (제주계통의 STATCOM 상정사고를 고려한 전력품질 해석)

  • Ko, Ji-Han;Kim, Dong-Wan;Kim, Seong Hyun;Kim, Homin;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • 제34권2호
    • /
    • pp.91-97
    • /
    • 2014
  • This paper presents the modeling and contingency analysis of Jeju power system. For the analysis of contingency with simulation, thermal power plants, current source type HVDC systems, wind farms, STATCOMs and Jeju power load are modeled by PSCAD/EMTDC program. And three kinds of simulation are carried out. Firstly, two STATCOMSs are in normal operation. Secondly, one STATCOM is in fault. Lastly, all of STATCOMs are in fault. These comparative studies will be useful for evaluating the effectiveness of STATCOM to stabilize for the Jeju power system.

Structural Design and Proof Test of a 2MW Wind Trubine Blade (2MW 로터 블레이드 구조설계 및 인증시험)

  • Bang, Jo-Hyug;Kim, Yang-Soo;Ryu, Ji-Yune;Kim, Doo-Hoon;Park, Sun-Ho;Park, Byoung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.349-352
    • /
    • 2007
  • A GFRP based composite blade was developed for a 2MW wind energy conversion system of type class IIA. The blade sectional geometry was designed to have a general shell-spar and shear web structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, blade tip deflection and natural frequencies were evaluated to satisfy the strength and stability requirements in accordance with the IEC61400-1 and GL Regulations. The prototype blade was passed the structural proof test for GL certification.

  • PDF

Static Wind Tunnel Test of Smart Un-manned Aerial Vehicle(SUAV) for TR-S4 Configuration (스마트 무인기 TR-S4 형상의 정적 풍동시험)

  • Choi Sung-Wook;Kim Cheol-Wan;Lee Jang-Yeon;Chung Jin-Deog
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제30권10호
    • /
    • pp.1012-1018
    • /
    • 2006
  • To evaluate the aerodynamic efficiency of TR-S4 configuration, wind tunnel tests of 40% scaled model were done in KARI LSWT. TR-S4 configuration has different nacelle shape, larger EO/IR camera and aftward wing location compared with TR-S2. Component build-up test after adding each element of model is performed. Also effects of horizontal tail incidences, Flaperon and Aileron deflection. on aerodynamic characteristics are measured. Test results showed that TR-S4 configuration has favorable stability characteristics in longitudinal, lateral and directional for the pitch and yaw motions.