• Title/Summary/Keyword: wind speed generator

Search Result 381, Processing Time 0.033 seconds

Operation Scheme to Regulate Constant Active Power Output of Wind Turbine and Fuel-Cell Hybrid System (정출력 조정을 위한 풍력-연료전지 하이브리드 시스템의 운영 기법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1174-1175
    • /
    • 2008
  • A operation scheme to regulate the active power output of the hybrid system consisted of a doubly fed induction generator(DFIG) and a fuel-cell are presented. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. A fuel cell system can be individually operated and adjusted output power. In this paper, a fuel-cell is performed to regulate the active output power in comparison with the active power output of a DFIG. Based on PSCAD/EMTDC power system tools, we simulated a DFIG and a fuel cell and investigated about dynamics of the output power in hybrid system.

  • PDF

Analysis of variable wind power generating control system using Doubly Fed Induction Machine (이중여자 유도기의 가변속 풍력발전 제어해석)

  • Kim Jeong-Woong;Kim Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.567-570
    • /
    • 2002
  • In variable speed wind power generating system connected in power grid, how to capture the maximum wind energy is most important thing Using the doubly fed induction machine as a generator in wind power generating system, it is possible to control the bidirectional slip power between grid and rotor side. This means that we can control the generating power under subsynchronous speed. To verify the theoretical analysis, computer simulation results using Psim program are presented to support the discussion.

  • PDF

Modeling and Analysis of V47-660 kW Wind Turbine Generator System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 모델링 및 해석)

  • Kim, Eel-Hwan;Kang, Geong-Bo;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • This paper presents the modeling and analysis of V47-660 kW wind turbine generation system(WTGS) in Jeju wind farm using Psim program. Generally, WTGS is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from V47 WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, results of computer simulation using Psim program are presented to support the discussion.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Distribution Feeder Aspects of a Variable Speed Wind Turbine in Voltage Fluctuations and Harmonics (가변속 풍력터빈이 연계된 배전선로의 전압변동 및 고조파 영향)

  • 김슬기;김응상
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.309-319
    • /
    • 2003
  • The main purpose of this paper is to present a simulation model for assessing the impacts of a variable speed wind turbine (VSWT) on the distribution network and perform a simulation analysis of volt-age profiles and harmonics along the wind turbine installed feeder using the presented model. The modeled wind energy conversion system consists of a fixed pitch wind turbine and a permanent-magnet synchronous generator, in which a controllable power electronics inverter performs variable speed operation and reactive power output control. Impact analysis on voltage profiles and harmonics of a VSWT-installed distribution feeder is addressed and simulated in terms of steady state and dynamic behaviors. Various capacities and different modes of variable speed wind turbines are simulated and investigated. Case studies demonstrate how feeder voltages are influenced by capacity and control modes of wind turbines and changes in wind speed under various network conditions, and show harmonic impacts on the feeder. Modeling and simulation analysis is based on PSCAD/EMTDC a software package.

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

Numerical Analysis with CFD Model for Site Designation in Urban Mountain Area (도심지 산악지형의 풍력발전 입지선정을 위한 전산유동해석 수치모의)

  • Lee, Hwa-Woon;Park, Soon-Young;Lee, Soon-Hwan;Kim, Dong-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.498-500
    • /
    • 2009
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost for generating power and small area for wind turbine. To estimate the wind power resource, it is necessary to make an observation first. Although the large wind farm and resources are near coast and mountain area, the wind energy in urban area has the strong thing of direct access to power generator. In this study, we estimate the probability of wind energy in urban mountain area using A2C (Atmospheric to CFD) model, which is used for horizontally urban scale phenomena. In the steady state results, the site C is most suitable for wind power in the point of the only wind speed. But, estimating the TKE and vertical wind shear, the site B is showing the better results than the site C.

  • PDF

PSCAD/EMTDC Simulation Model of Variable Speed Wind Power Generation System Using Permanent Magnet Synchronous Machine (영구자석형 동기기에 의한 가변속 풍력발전 시스템의 PSCAD/EMTDC 시뮬레이션 모델 개발)

  • Kim Jeong-Jae;Song Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.610-617
    • /
    • 2005
  • A variable speed wind turbine simulation model for grid connection is developed based on PSCAD/EMTDC. The model consists of wind model, rotor dynamics, synchronous generator, power converter, transformer, distribution line and infinite bus. Implementation of blade characteristics and power converter control strategies are included. Several transient case studies are performed including wind speed change, local load change and grid-side voltage unbalance using developed simulation model. The results of this work can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

Study on Reserve Requirement for Wind Power Penetration based on the Cost/Reliability Analysis

  • Shin, Je-Seok;Kim, Jin-O;Bae, In-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1397-1405
    • /
    • 2017
  • As the introduction of wind power is steadily increasing, negative effects of wind power become more important. To operate a power system more reliable, the system operator needs to recognize the maximum required capacity of available generators for a certain period. For recognizing the maximum capacity, this paper proposes a methodology to determine an optimal reserve requirement considering wind power, for the certain period in the mid-term perspective. As wind speed is predicted earlier, the difference of the forecasted and the actual wind speed becomes greater. All possible forecast errors should be considered in determining optimal reserve, and they are represented explicitly by the proposed matrix form in this paper. In addition, impacts of the generator failure are also analyzed using the matrix form. Through three main stages which are the scheduling, contingency and evaluation stages, costs associated with power generation, reserve procurement and the usage, and the reliability cost are calculated. The optimal reserve requirement is determined so as to minimize the sum of these costs based on the cost/reliability analysis. In case study, it is performed to analyze the impact of wind power penetration on the reserve requirement, and how major factors affect it.

Ride-through of PMSG Wind Power System Under the Distorted and Unbalanced Grid Voltage Dips

  • Sim, Jun-Bo;Kim, Ki-Cheol;Son, Rak-Won;Oh, Joong-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.898-904
    • /
    • 2012
  • This paper presents a ride-through skill of PMSG wind turbine system under the distorted and unbalanced grid voltage dips. When voltage dips occur in the grid, pitch control and generator speed control as well as a parallel resistor of DC-link help to keep the turbine's safety. Modern grid code requires a wind turbine to supply reactive currents to help voltage recovery after grid faults clearance. In order to supply reactive currents to the grid in case of the distortedly unbalanced grid voltage dips, a special PLL is needed to control the grid side converter and to regulate the grid voltages symmetrically. The proposed method is applied to 2MW multi-pole PMSG wind turbine system, and verified by simulation.