• Title/Summary/Keyword: wind rotor

Search Result 534, Processing Time 0.04 seconds

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.303-312
    • /
    • 2022
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Rotor Speed-based Droop of a Wind Generator in a Wind Power Plant for the Virtual Inertial Control

  • Lee, Jinsik;Kim, Jinho;Kim, Yeon-Hee;Chun, Yeong-Han;Lee, Sang Ho;Seok, Jul-Ki;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1021-1028
    • /
    • 2013
  • The frequency of a power system should be kept within limits to produce high-quality electricity. For a power system with a high penetration of wind generators (WGs), difficulties might arise in maintaining the frequency, because modern variable speed WGs operate based on the maximum power point tracking control scheme. On the other hand, the wind speed that arrives at a downstream WG is decreased after having passed one WG due to the wake effect. The rotor speed of each WG may be different from others. This paper proposes an algorithm for assigning the droop of each WG in a wind power plant (WPP) based on the rotor speed for the virtual inertial control considering the wake effect. It assumes that each WG in the WPP has two auxiliary loops for the virtual inertial control, i.e. the frequency deviation loop and the rate of change of frequency (ROCOF) loop. To release more kinetic energy, the proposed algorithm assigns the droop of each WG, which is the gain of the frequency deviation loop, depending on the rotor speed of each WG, while the gains for the ROCOF loop of all WGs are set to be equal. The performance of the algorithm is investigated for a model system with five synchronous generators and a WPP, which consists of 15 doubly-fed induction generators, by varying the wind direction as well as the wind speed. The results clearly indicate that the algorithm successfully reduces the frequency nadir as a WG with high wind speed releases more kinetic energy for the virtual inertial control. The algorithm might help maximize the contribution of the WPP to the frequency support.

Aerodynamic Analysis of Tilt-Rotor Unmanned Aerial Vehicle with Computational Fluid Dynamics

  • Kim Cheol-Wan;Chung Jin-Deog
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2006
  • CFD simulation for one of tilt-rotor UAV configurations, TR-E2S1, was performed to investigate its aerodynamic characteristics. Control surfaces such as elevator and rudder were deflected and wing incidence angle was changed. Also aerodynamic stabilities were analyzed with the variation of pitch and yaw angles. The comparison of CFD with wind tunnel test results reveals the same trends in the aerodynamic characteristics and stabilities. However 12% scale wind tunnel test model is too small for accurate data collection and should build a high fidelity model for quantitative data comparison.

Grid Connection Algorithm for Doubly-Fed Induction Generator Using Rotor Side PWM Inverter-Converter (회전자측 PWM 인버터-컨버터를 사용한 이중여자 유도형 풍력 발전기의 계통 투입 알고리즘)

  • 정병창;권태화;송승호;김일환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.528-534
    • /
    • 2003
  • A grid connection algorithm is proposed for the doubly-fed induction generator (DFIG) which is widely adopted in high power variable speed wind turbine. Before the stator of DFIG is connected to grid, rotor-side converter is used to control the induced stator voltage. As a result, the stator transient current is limited below the rate value during the connection by the proposed synchronization of the stator voltage to the grid voltage. A wind power generation simulator using DC motor and wound-rotor induction generator is built and the dynamic characteristics of proposed algorithm is verified experimentally.

Response of Torque Controller for a MW Wind Turbine under Turbulence Wind Speed (난류 풍속에 대한 MW급 풍력발전기의 토크 제어기 응답)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.173-180
    • /
    • 2017
  • The main objective of a torque controller below rated wind speed is to extract maximum power from the potential wind energy. To do this, the torque control method, which adjusts the torque magnitude and makes it proportional to the square of the generator speed, has been applied. However, this method makes the response slower as the wind turbines are getting larger in size with multi-MW capacities. In this paper, a torque control method that uses the nonlinear parameter of rotor speed for aerodynamic torque as a control gain is discussed to improve the response by adjusting an additional torque magnitude. The nonlinear parameter of the rotor speed could be calculated both online and offline. It is shown that the offline case is more practical and effective in producing power through the numerical simulation of a 2MW wind turbine by considering the real turbulence wind speed.

An Experimental Study on a Windheat Generation System with a Savonius Wind Turbine

  • Kim, Young-Jung;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Yun, Jin-Ha;Kang, Youn-Ku
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-69
    • /
    • 2005
  • A windheat generation system with a Savonius windturbine was developed and the performance was evaluated through field tests. The system consisted of a heat generation drum, heat exchanger, water storage tank, and two circulation pumps. Frictional heat is created by rotation of a rotor inside the drum containing thermo oil, and was used to heat water. In order to estimate the capacity of this windheat generation system, weather data was collected for one year at the site near the windheat generation system. Wind Power from the savonius wind turbine mill was transmitted to the heat generation system with an one-to-three gear system. Starting force to rotate the savonius wind turbine and the whole system including the windheat generation system were 1.0 and 2.5 kg, respectively. Under the outdoor wind condition, maximum speed of the rotor in the drum was 75rpm at wind speed 6.5 m/sec, which was not fast enough to produce heat for greenhouse heating. Annual cumulative hours for wind speeds greater than 5 m/sec at height of 10, 20, 30 m were 190, 300 and 1020 hrs, respectively. A $5^{\circ}C$ increase in water temperature was achieved by the windheat generation system under the tested wind environment.

  • PDF

Characteristics of Fatigue Load in a Wind Turbine by the Wake (후류에 의한 풍력터빈의 피로하중 특성)

  • Kim, Chung-Ok;Eum, Hark-Jin;Nam, Hyun-Woo;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • The wake generated by a wind turbine has an effect on performance of a downstream wind turbine as well as mechanical loads. This paper investigated characteristics of fatigue load at the blade root due to the wake effects and quantitatively analyzed its effects at operating condition of a 5MW tripod offshore wind turbine using Bladed 4.1 software. The wake effects was studied the way the wake's center position move from the rotor center to the blade tip to the far-away position where the wake doesn't affect the wind turbine. When wake's center was located on the blade tip or the rotor center, damage equivalent fatigue load was higher than other positions. It was up to 10~14% compared to those of non-wake case. Results of this study would be helpful to design wind turbines and wind farms to have lifetimes more than 20 years of the wind turbine.

A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed (실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구)

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

Wind Tunnel Testing for Smart Unmanned Aerial Vehicle (스마트 무인기 풍동시험)

  • Chung, Jin-Deog;Choi, Sung-Wook;Lee, Jang-Yeoun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.37-40
    • /
    • 2006
  • Wind tunnel testings to develope tilt-rotor Smart Unmanned Aerial Vehicle (SUAV) were intensively performed. Small wind tunnel was used to find and evaluate design parameters and to fix general layout of configuration. The application of large tunnel with 40% scaled model is to collect performance and stability related aerodynamic data. During large scale model test wind tunnel is used as a tool to compare Flaperon types, to improve lift characteristics by using different height vortex generators and to alleviate nacelle separated flow effects on the wing.

  • PDF

Stepwise inertial control of a DFIG to prevent the over-deceleration in wind speed reduction (풍속 감소 시 Over-Deceleration 방지를 위한 DFIG 풍력발전기의 계단형 출력 관성제어)

  • Kang, Moses;Lee, Jinsik;Kang, Yong Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.173-174
    • /
    • 2015
  • If a wind speed decreases during inertial control of a wind turbine generator (WTG), the rotor speed might decrease below the minimum operating limit, which is called over-deceleration (OD). When OD occurs, inertial control should be disabled and then the output power of a WTG significantly decreases. This significant power reduction causes a subsequent frequency drop. This paper proposes the stepwise inertial control to prevent OD when a wind speed decreases during inertial control. To do this, the proposed scheme changes the additional power output based on the rotor speed. The performance of the proposed scheme is investigated using an EMTP-RV simulator. The results show that the proposed inertial control scheme prevent OD even when the wind speed decreases during inertial control.

  • PDF