• Title/Summary/Keyword: wind response characteristics

Search Result 256, Processing Time 0.03 seconds

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

Characteristics and Treatment of Temporomandibular Disorder in Children and Adolescents: An Analytic Review

  • Park, Hyung-Seok;Ahn, Yong-Woo;Jeong, Sung-Hee;Jeon, Hye-Mi;Ok, Soo-Min
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate the prevalence of temporomandibular disorders (TMDs) in children and adolescents, their characteristic contributing factors, the characteristic features of symptoms and symptoms, and the response to treatment. Methods: We studied the researches, that were the results of the searches for words such as temporomandibular disorder, TMD, children, adolescents, and juvenile through PubMed and DBpia. Results: According to a study conducted in Busan, the ratio of adolescents increased from 18.3% to 21% in 2008 compared to 2000, and the proportion of boys increased from 38.58% to 45.38%. One of the characteristic contributing factors for adolescents is the macrotrauma such as jaw trauma, vehicle accidents, sports, physical abuse, forceful intubation, and third molar extraction. The second is a microtrauma from parafunctional habit such as bruxism, clenching, hyperextension, wind instrument, and fingernail biting that can cause joint overload, cartilage breakdown, synovial fluid alterations, and other changes within the joint. The diagnosis of TMDs in juvenile adolescents is not significantly different from that of adults. Medical history, clinical examination and radiological examinations are required. Conclusions: In the temporomandibular joint history and assessment, all comprehensive dental history examination is required, including head and neck pain, mandibular dysfunction, previous orofacial trauma, history of present illness with an account of current symptoms. For the treatment and management of temporomandibular arthritis in juvenile adolescents, understanding the characteristics of TMDs in juvenile adolescents and thoroughly analyzing appropriate diagnosis and possible contributing factors through comprehensive history taking & examination, conservative treatment, including fast and active cautions education, will be essential.

A Prediction Method of Tension on Containment Boom for Marine Floating Debris (부유물 차단막에 작용하는 장력추정에 관한 실험연구)

  • Yu J. S.;Sung H. G.;Ryu J. M.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • The main functions of containment boom for marine floating debris are to prevent spreading of the marine floating debris and to effectively collect the trash skimmer. The design characteristics of containment boom for marine floating debris in wave, current and wind are investigated. The response of a containment boom on the current is a function of a number of parameters, such as geometric characteristics, buoyance/weight ratio and towing velocity. To understand the relationship between these design parameters more clearly, a series of tests with three models with the variation of current speed and gap ratio was conducted. The model tests results are developed to new numerical equation that is tension prediction method of containment boom for marine floating debris. Also its is compared with open sea experimental results.

  • PDF

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Characteristics of Diurnal Variation of Volatile Organic Compounds in Seoul, Korea during the Summer Season (서울지역 여름철 VOCs 일변동 특성에 관한 연구)

  • Park, Jong-sung;Song, In-ho;Kim, Hyun-woong;Lim, Hyung-bae;Park, Seung-myung;Shin, Su-na;Shin, Hye-jung;Lee, Sang-bo;Kim, Jeong-su;Kim, Jeong-ho
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.264-280
    • /
    • 2018
  • In this study, volatile organic compounds (VOCs) were measured using a proton transfer reaction-time of flight-mass spectrometer (PTR-ToF-MS) at the Seoul Metropolitan Area Intensive Monitoring Station (SIMS) in Korea during the summer season of 2018. The results revealed that oxygenated VOCs (OVOCs) contributed a large fraction (83.6%) of the total VOCs, with methanol being the most abundant constituent (38.6%). The VOCs measured at SIMS were strongly influenced by local conditions. Non-volatile organic compounds (NVOCs), such as pinene, increased due to northeasterly wind direction in the morning, and OVOCs and anthropogenic VOCS (AVOCs) increased with northwesterly wind direction during the daytime. This was the result of the eastward location of Bukhansan National Park and the westward location of urban area from the SIMS location. The VOCs included abundant oxidized forms of VOCs, which can affect the generation of fine dust through various response pathways in the atmosphere. The real-time measurement technique using PTR-ToF-MS suggested in this study is expected to contribute to an improved scientific understanding of high-concentration fine dust events because the high temporal resolution makes it possible to analyze the variations of VOCs reflected in dynamic events.

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part II : Simulation and Experimental Results

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this paper, the power conditioner composed of the stand-alone single-phase squirrel cage rotor type self-excited induction generator (SEIG) driven by prime movers such as a wind turbine and a micro gas turbine (MGT) is presented by using the steady-state circuit analysis based on the two nodal admittance approaches using the per-unit frequency in addition to a new state variable defined by the per-unit slip frequency along with its performance evaluations for the stand-alone energy utilizations. The stande-alone single-phase SEIG operating performances in unregulated voltage control loop are then evaluated on line under the conditions of the speed change transients of the prime mover and the stand-alone electrical passive load power variations with the simple theoretical analysis and the efficient computation processing procedures described in the part I of this paper. In addition, a feasuible PI controlled feedback closed-loop voltage regulation scheme of the stande-alone single-phase SEIG is designed on the basis of the static VAR compensate. (SVC) and discussed in experiment for the promising stand-alone power conditioner. The experimental operating performance results are illustrated and give good agreements with the simulation ones. The simulation and experimental results of the stand-alone single-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvements.

Long-term Simulation and Uncertainty Quantification of Water Temperature in Soyanggang Reservoir due to Climate Change (기후변화에 따른 소양호의 수온 장기 모의 및 불확실성 정량화)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong;Kim, Yongda;Ohn, Ilsang;Lee, Seoro
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Future climate change may affect the hydro-thermal and biogeochemical characteristics of dam reservoirs, the most important water resources in Korea. Thus, scientific projection of the impact of climate change on the reservoir environment, factoring uncertainties, is crucial for sustainable water use. The purpose of this study was to predict the future water temperature and stratification structure of the Soyanggang Reservoir in response to a total of 42 scenarios, combining two climate scenarios, seven GCM models, one surface runoff model, and three wind scenarios of hydrodynamic model, and to quantify the uncertainty of each modeling step and scenario. Although there are differences depending on the scenarios, the annual reservoir water temperature tended to rise steadily. In the RCP 4.5 and 8.5 scenarios, the upper water temperature is expected to rise by 0.029 ℃ (±0.012)/year and 0.048 ℃ (±0.014)/year, respectively. These rise rates are correspond to 88.1 % and 85.7 % of the air temperature rise rate. Meanwhile, the lower water temperature is expected to rise by 0.016 ℃ (±0.009)/year and 0.027 ℃ (±0.010)/year, respectively, which is approximately 48.6 % and 46.3 % of the air temperature rise rate. Additionally, as the water temperatures rises, the stratification strength of the reservoir is expected to be stronger, and the number of days when the temperature difference between the upper and lower layers exceeds 5 ℃ increases in the future. As a result of uncertainty quantification, the uncertainty of the GCM models showed the highest contribution with 55.8 %, followed by 30.8 % RCP scenario, and 12.8 % W2 model.

Introduce for Development of Pyro Valve of Vehicle Holding Device for KSLV-II (한국형발사체 발사체고정장치용 파이로밸브 개발 소개)

  • Ji, Sang-Yeon;Kang, Sun-Il;Lee, Young-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.26-29
    • /
    • 2017
  • KARI has been conducting R&D for independent development of KSLV-II since 2010. Vehicle holding device is a device for vertically standing SLV on the launch pad of launch complex and fixing the lower part of vehicle in order to firmly fix vehicle so that SLV does not fall from an external load such as a wind load. When thrust generated after the 1st stage engine ignition of SLV must exceed the takeoff weight of vehicle, and holding device should be quickly released so that it does not interfere with takeoff of vehicle like other ground equipment at the beginning of the launch. Pyro-valve is one of the key components constituting VHD, and it should have high reliability and quick response characteristics with similar functional parts applied to launch vehicle separation device and satellite separation device. Through this paper, I intend to broaden the overall understanding of the development process of pyro-valve for VHD and KSLV-II.

  • PDF