• 제목/요약/키워드: wind response characteristics

검색결과 256건 처리시간 0.03초

Wind power spectra for coastal area of East Jiangsu Province based on SHMS

  • Wang, Hao;Tao, Tianyou;Wu, Teng
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.235-252
    • /
    • 2016
  • A wind velocity power spectrum (WVPS) with high fidelity is extremely important for accurate prediction of structural buffeting response. WVPS heavily depends on the geographical locations, local terrains and topographies. Hence, field measurement of wind characteristics may be the unique way to obtain the accurate WVPS for a specific region. In this paper, a systematic analysis and discussions of existing WVPSs were performed. Six recorded strong wind data from the structural health monitoring systems (SHMS) of Runyang Suspension Bridge (RSB) and Sutong Cable-stayed Bridge (SCB) in Jiangsu Province of China were selected for analysis. The measured and pre-processed wind velocity data was first transformed from time domain to frequency domain to obtain the measured spectrum. The spectrum for each strong wind was then fitted using the nonlinear least square method and compared with both the fitted spectrum from statistical analysis and the recommended spectrum in specifications. The modified Kaimal spectrum was proved to be the "best" choice for the coastal area of East Jiangsu Province. Finally, a suitable WVPS formula fit for the coastal area of East Jiangsu Province was presented based on the modified Kaimal spectrum. Results in this study provide a more accurate and reliable WVPS for wind-resistant design of engineering structures in the coastal area of East Jiangsu Province.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계 (AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST)

  • 박영민;최인호;이융교;권기정;김성찬;황인희
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정 (Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics)

  • 홍영길
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

재해연보 기반 지역특성을 반영한 강풍피해예측함수 개발 : 경상지역을 중심으로 (Development of Estimation Functions for Strong Winds Damage Reflecting Regional Characteristics Based on Disaster Annual Reports : Focused on Gyeongsang Area)

  • 노정래;송창영
    • 한국재난정보학회 논문집
    • /
    • 제16권2호
    • /
    • pp.223-236
    • /
    • 2020
  • 연구목적: 본 연구에서는 재난관리(예방-대비-대응-복구) 중 대비차원으로 활용하고자 강풍피해예측함수를 개발하였다. 연구방법: 본 연구에서 제안하는 강풍피해예측함수는 재해연보이력, 피해당시 기상자료 그리고 지역특성을 고려하였다. 기상자료는 기상청에서 관측한 풍속과 기온, 피해이력에 해당하는 통계자료는 재해연보, 그리고 지역특성을 반영하기 위한 요소로는 재해연보 상 수록된 복구비, 인구, 비닐하우스 면적, 농가수 등을 활용하였다. 연구결과: 본 연구에서 개발한 함수식은 과거에 발생한 강풍피해이력을 기반으로 예측되는 기상인자와 지역특성을 반영하였으며, 단시간에 피해규모를 예측할 수 있다. 결론: 본 연구에서 개발한 강풍피해예측함수는 정책결정자들의 의사결정, 비상인력 및 방재자원의 배치 등과 같은 효율적인 재난관리에 활용할 수 있을 것으로 판단된다.

2엽 및 3엽 수직축 풍력-태양광 하이브리드 가로등의 발전 중 진동계측을 통한 동적 특성 비교 (Comparison of Dynamic Characteristics of a Wind and Photovoltaic Hybrid Light Pole Structure with 2-bladed and 3-bladed Vertical Axis Turbine Rotors Using Vibration Measurement under Normal Operation Conditions)

  • 이진학;박상민;임승률
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.118-125
    • /
    • 2019
  • 이 연구에서는 풍력-태양광 하이브리드 가로등 구조물에 대한 동적 응답을 계측하여, 서로 다른 터빈을 적용하였을 때의 진동 특성 및 공진현상을 비교하였다. 2엽 및 3엽 풍력터빈을 적용하였으며, 하이브리드 가로등이 가지고 있는 진동 특성은 가동 중인 조건에서의 동특성과 가진력을 비교하여 분석하였다. 최근 제안된 방법을 통해 가속도 계측자료를 이용하여 변위 응답을 추정하였고, 2엽 풍력터빈을 적용한 경우 동적 변위 응답의 진폭은 공진 하의 조건에서 4~6cm 범위에 있고, 3엽 풍력터빈을 적용한 경우에는 공진이 발생하지 않아 변위는 2mm 이내로 제한됨을 알 수 있었다.