• Title/Summary/Keyword: wind resistant design

Search Result 80, Processing Time 0.02 seconds

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

Reliability-Based Wind-Resistant Design Criteria of Transmission Towers (신뢰성에 기초한 송전철탑의 내풍설계기준)

  • Cho, Hyo Nam;Shin, Jae Chul;Lee, Seung Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1043-1053
    • /
    • 1994
  • This study suggests a practical but rational approach for the development of reliability-based LRFD criteria for transmission towers under wind and ice loadings in Korea. Based on available statistical data on wind speed and icing on transmission lines in Korea, the design wind and ice loads are obtained by Monte Carlo Simulations. In the study, the AFOSM reliability method and an Importance Sampling Technique are used for the element and system reliability evaluation of actual transmission towers. Based on the selected target reliabilities, a set of load and resistance factors for the LRFD criteria are calibrated using the AFOSM and the code optimization technique.

  • PDF

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

Seismic Performance Evaluation and a Comparative Study on the Design Wind and Earthquake Loads for Power Transmission Towers (송전철탑의 내진성능평가 및 설계 풍하중과 지진하중의 비교 연구)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Jang, Jung-bum;Yun, Kwan-hee;Kim, Tae-kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2019
  • In this study 24 power transmission towers were selected by considering various variables such as power transmission capacity, height and structural type to evaluate their seismic performance using the standard design response spectrum recently announced by the government. In addition, the stresses and sectional forces generated by the current design wind loads and revised seismic ones were compared to review the effects on the design of power transmission towers when the government-required seismic standards were raised. The results of seismic performance evaluation for the target power transmission towers showed that they had seismic capacity of 0.31~0.91g, and that they met the level of the earthquake-resistant special grade, which is the 2,400-year earthquake return periods and secured seismic safety. Further, the sectional forces caused by earthquakes in the towers were 33~82.5% of the ones due to wind loads, and it was also confirmed that the design wind loads were more dominant than design earthquake ones under the elevated seismic standards.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation (태풍 시뮬레이션을 통한 한반도 극한풍속 추정)

  • Lee, Sungsu;Kim, Ga Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • The long-span bridges such as Incheon Bridge and Seohae Grand Bridge are located on the coastal region effected frequently by strong wind of typhoons. In order to ensure the wind-resistant performance of the structure, estimation of the proper design wind speed is very important. In this study, stochastic estimation of design wind speed incurred by typhoons is carried out. For this purpose, we first established probability distribution of climatological parameters such as central pressure depth, distance of closest approach, translation speed and heading to build statistical model of typhoons, which are employed in Monte Carlo simulation for hypothetical typhoons. Once a typhoon is generated with statistically justified parameters, wind speeds are estimated along its path using wind field model. Thousands of typhoons are generated and their peak wind speeds are utilized to establish the extreme wind speeds for different return period. The results are compared with design basic wind speeds in Korean Highway Bridge Design Code, showing that the present results agree well with similar studies while the existing code suggests higher design wind speed.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio

  • Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The importance of appropriate use of damping evaluation techniques and points to note for accurate evaluation of damping are first discussed. Then, the variation of damping ratio with amplitude is discussed, especially in the amplitude range relevant to wind-resistant design of buildings, i.e. within the elastic limit. The general belief is that damping increases with amplitude, but it is emphasized that there is no evidence of increasing damping ratio in the very high amplitude range within the elastic limit of main frames, unless there is damage to secondary members or architectural finishings. The damping ratio rather decreases with amplitude from a certain tip drift ratio defined as "critical tip drift ratio," after all friction surfaces between primary/structural and secondary/non-structural members have been mobilized.