• 제목/요약/키워드: wind profile simulation

검색결과 56건 처리시간 0.027초

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

RSMC 최적경로 자료를 이용한 태풍의 최대풍속반경 산정 (Estimation on the Radius of Maximum Wind Speed using RSMC Best Track Data)

  • 고동휘;정신택;조홍연;전기천;김윤칠
    • 한국해안·해양공학회논문집
    • /
    • 제25권5호
    • /
    • pp.291-300
    • /
    • 2013
  • 태풍시 발생하는 해상풍 산출을 위해서는 태풍 모의 기법을 이용하며, 이 경우 Holland 모델은 비교적 정확도 높은 태풍 모의가 가능하게 한다. 태풍 모의를 위한 가용 정보로는 JTWC(Joint Typhoon Warning Center, USA)와 RSMC(Regional Specialized Meteorological Center, Japan) 최적경로자료가 있으며, 두 자료는 매개변수 산정 방법과 제공하는 태풍인자가 약간 다르다. 본 연구에서는 RSMC 최적경로자료에서 제공하는 풍속 25 m/s와 15 m/s에 해당하는 반경을 Holland 모형에 각각 대입하여 구성되는 2개의 비선형 방정식을 구성하였으며, 구성된 방정식의 해에 해당하는 최대풍속반경은 Newton-Raphson 기법을 이용하여 산출하였다. 본 방법은 일본 기상청(JMA)에서 제공하는 태풍 풍속프로파일에 근거하여 산출된 결과로서 타 방법에 의하여 산출된 결과보다 태풍 매개변수의 공간적, 시간적 변화에 능동적으로 반응하여 태풍의 특성을 보다 잘 반영하는 것으로 나타났다. RSMC 최적경로 자료를 이용할 경우, 본 방법은 태풍모의 입력 자료의 일관성도 확보할 수 있기 때문에 최대풍속 반경 산출에 합리적일 것으로 판단된다.

도자기 1차 소성로의 3차원 유동장 수치해석에 관한 연구 (A Numerical Study of the 3-D Flow in the Primary Calcinator of Porcelain)

  • 김성수;홍성선;박지영;오창섭
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.50-55
    • /
    • 1996
  • 상용 code인 Fluent를 이용하여 도자기의 1차 소성로에 대해 온도장과 속도장을 계산하고 열효율을 산출하였다. 수치해석의 변수로는 배출구 및 도자기의 위치를 변화시켰으며, 수치해석 방법은 검사체적에 기초한 유한차분방법 및 Upwind scheme과 SIMPLEC Algorithm을 사용하였고 난류모델로는 표준 k-$\varepsilon$ 모델을 사용하였다. 계산결과 출구 위치가 전체 소성로내 벡터유동의 양상을 크게 좌우하는 것으로 나타났으며, 전체 온도장에 대해서는 복사의 영향으로 큰 차이를 보이지 않았으나 예열대 상부에 출구가 있는 경우와 비교할 때 예열대 또는 냉각대의 측면에 출구가 있는 경우에 그 영역의 온도가 다소 높게 나타났다. 소성품의 위치는 로내 유동장 및 온도 분포에 크게 영향을 끼치지는 않으나 소성품 내 온도는 그 위치하는 영역의 온도 분포에 크게 영향을 받는 것으로 나타났다. 예열대 상부에 출구가 있는 경우 열효율은 17%로 매우 저조하였고 출구에서의 가스온도는 약 1000 K로 매우 높았다.

  • PDF

전산유체역학을 통한 간척지 내 벤로형 온실의 자연환기량 분석 (Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD)

  • 이상연;이인복;권경석;하태환;여욱현;박세준;김락우;조예슬;이승노
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.21-33
    • /
    • 2015
  • Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was $1.0\;m{\cdot}s^{-1}$, only side vent was open and wind direction was $45^{\circ}$, homogeneity of ventilation rate at 0~1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.

PMSG 풍력발전기용 3L ANPC와 TNPC 컨버터에서의 10kV IGCT 성능 비교 평가 (Comparative Performance Evaluation of 10kV IGCTs in 3L ANPC and TNPC Converters in PMSG MV Wind Turbines)

  • 암리나 라마 링도;서용석;박병건;김지원
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.419-427
    • /
    • 2019
  • Several multilevel converter topologies have been proposed and compared. The three-level (3L) neutral-point-clamped (NPC) topology is promising and widely accepted. However, this topology suffers from uneven loss distribution among switches due to its fixed switching strategy. The 3L active NPC (ANPC) topology, which exhibits improved loss distribution profile, was proposed to address this disadvantage. The 3L T-NPC topology, a hybrid configuration of 2L and 3L NPC topologies, was introduced to address not only the loss distribution problem but also the reduction in the number of switches. In the present research, the application of these three topologies in PMSG-based medium-voltage wind turbines was investigated. The power devices considered were 10 kV IGCTs. Performance was evaluated in terms of a power loss of 10 kV IGCT for each NPC topology, which is a crucial indicator of thermal behavior, reliability, cost, and lifetime of any converter. The comparison was performed using ABB make 10 kV IGCT 5SHY17L9000 and the simulation tool PLECS.

Assessment of the Near Real-Time Validation for the AQUA Satellite Level-2 Observation Products

  • Yang Min-Sil;Lee Jeongsoon;Lee Chol;Park Jong-Seo;Kim Hee-Ah
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.35-38
    • /
    • 2004
  • We developed a Near Real-Time Validation System (NRVS) for the Level-2 Products of AQUA Satellite. AQUA satellite is the second largest project of Earth Observing System (EOS) mission of NASA. This satellite provides the information of water cycle of the entire earth with many different forms. Among its products, we have used five kinds of level-2 geophysical parameters containing rain rate, sea surface wind speed, skin surface temperature, atmospheric temperature profile, and atmospheric humidity profile. To use these products in a scientific purpose, reasonable quantification is indispensable. In this paper we explain the near real-time validation system process and its detail algorithm. Its simulation results are also analyzed in a quantitative way. As reference data set in-situ measured meteorological data which are periodically gathered and provided by the Korea Meteorological Administration (KMA) is processed. Not only site-specific analysis but also time-series analysis of the validation results are explained and detail algorithms are described.

  • PDF

지능제어를 이용한 크레인의 진동 및 위치 제어에 관한 연구 (Anti-swing and Position Control of Crane Using Intelligent Technique)

  • 이은경;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.524-527
    • /
    • 1995
  • In most cases, a crane is controlled by an open-loop technique. That is, the controller tries to follow a given velocity profile that is designed to minimize the swing of rope and the transfer time. But such a system is not capable of handling various disturbances such as changing rope length and wind effect. In order to overcome this kind of difficulty, this research focuses on the design of a feedback controller using intelligent techniques such as fuzzy logic and neural network. These intelligent techniques has been emplyoyed in order to represent human knowledge and to imitate human learning. The deveped controllers have been evaluated via computer simulation

  • PDF

풍력터빈용 고속단 헬리컬 기어의 치형 최적화에 관한 연구 (A Study on Optimization of Tooth Micro-geometry for Wind Turbine High Speed Stage Helical Gear Pair)

  • 조성민;이도영;김래성;조상필;류성기
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.15-20
    • /
    • 2014
  • The wind industry grew in the first decade of the 21st century at rates consistently above 20% a year. For wind turbine, gearbox failure can be extremely costly in terms of repair costs, replacement parts, and in lost power production due to downtime. In this paper, gear tooth micro-modification for the high speed stage was used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox was firstly modeled in a software, and then the various combined tooth modification were presented, and the prediction of transmission under the loaded torque for the helical gear pair was investigated, the normal load distribution and root stress were also obtained and compared before and after tooth modification under one torque. The simulation results showed that the transmission error and normal load distribution under the load can be minimized by the appropriate tooth modification. It is a good approach where the simulated result is used to improve the design before the prototype is available for the test.

Numerical simulation for unsteady flow over marine current turbine rotors

  • Hassanzadeh, A. Reza;Yaakob, Omar bin;Ahmed, Yasser M.;Ismail, M. Arif
    • Wind and Structures
    • /
    • 제23권4호
    • /
    • pp.301-311
    • /
    • 2016
  • The numerous benefits of Savonius turbine such as simple in structure, has appropriate self-start ability, relatively low operating velocity, water acceptance from any direction and low environmental impact have generated interests among researchers. However, it suffers from a lower efficiency compared to other types of water turbine. To improve its performance, parameters such flow pattern, pressure and velocity in different conditions must be analyzed. For this purpose, a detailed description on the flow field of various types of Savonius rotors is required. This article presents a numerical study on a nonlinear two-dimensional flow over a classic Savonius type rotor and a Benesh type rotor. In this experiment, sliding mesh was used for solving the motion of the bucket. The unsteady Reynolds averaged Navier-Stokes equations were solved for velocity and pressure coupling by using the SIMPLE (Semi-Implicit Method for Pressure linked Equations) algorithm. Other than that, the turbulence model using $k-{\varepsilon}$ standard obtained good results. This simulation demonstrated the method of the flow field characteristics, the behavior of velocity vectors and pressure distribution contours in and around the areas of the bucket.

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.