• 제목/요약/키워드: wind pressure measurement

검색결과 124건 처리시간 0.023초

수중펌프압송이 고강도 그라우트의 강도에 미치는 영향 (Effect of Underwater Pumping on the Strength of High-Strength Grout)

  • 김범휘;이종구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.193-194
    • /
    • 2022
  • The use of high-strength grout for facility foundations and bridges has recently been expanding in offshore wind farms. Offshore wind farms require a bearing capacity for horizontal loads such as wind, waves. Therefore, in this study, the strength of the high-strength grout discharged through pump pressure was measured and compared with the existing strength to secure the strength after the underwater pump pressure of the high-strength grout used in the offshore wind connection. The compressive strength measurement showed that the strength difference at each position of the core specimen was 1% higher than that of the other specimens, and there was almost no change in the strength according to the height. The strength of the core specimen decreased by 23% compared to the existing strength, which is similar to the result of this study because the strength of the core specimen decreased by approximately 25% compared to the general specimen according to related research. Therefore, it is believed that there is no decrease in strength due to underwater pumping.

  • PDF

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

PSP를 이용한 항공기 형상 모형 날개 표면 압력 측정 (Surface pressure measurement on a wing of SWIM by using PSP)

  • 정혜진;권기정
    • 한국항공우주학회지
    • /
    • 제36권4호
    • /
    • pp.337-345
    • /
    • 2008
  • 연구에서는 NACA4412익형으로 이루어진 주날개에 NACA0012플랩이 장착된 아음속 벽면효과 모형(SWIM)의 날개 표면 3차원 압력 분포를 압력감응페인트를 이용하여 시험적으로 연구하였다. 한국항공우주연구원의 아음속 풍동에서 레이놀즈수 3.1x105의 조건에서 시험 모형의 받음각 변화에 따른 날개 윗면 및 아랫면의 압력 분포를 측정하였다. 그 결과 받음각이 증가함에 따라 날개 윗면에서의 최저 압력 지점이 뿌리에서 끝단으로 이동을 하는 것을 관찰하였고, 날개 끝단의 뒷전에서도 끝단 와류를 일으키는 압력이 매우 낮은 지점도 관찰되었다. 그러나 실속각 이후인 받음각 15도의 경우 끝단 뒷전에서는 압력이 낮은 지점이 계속 관찰되었으나 그 이외의 부분은 스팬 방향 압력 분포가 편평하였다. 압력감응페인트와 더불어 압력공을 사용하여 날개의 코드 방향 2차원 압력분포도 측정 하여 비교하였고 두 시험에서 측정된 각 압력계수들의 차이의 평균은 약 0.077임을 확인하였다.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구 (A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI)

  • 모장오;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.

Crosswind effects on high-sided road vehicles with and without movement

  • Wang, Bin;Xu, You-Lin;Zhu, Le-Dong;Li, Yong-Le
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.155-180
    • /
    • 2014
  • The safety of road vehicles on the ground in crosswind has been investigated for many years. One of the most important fundamentals in the safety analysis is aerodynamic characteristics of a vehicle in crosswind. The most common way to study the aerodynamic characteristics of a vehicle in crosswind is wind tunnel tests to measure the aerodynamic coefficients and/or pressure coefficients of the vehicle. Due to the complexity of wind tunnel test equipment and procedure, the features of flow field around the vehicle are seldom explored in a wind tunnel, particularly for the vehicle moving on the ground. As a complementary to wind tunnel tests, the numerical method using computational fluid dynamics (CFD) can be employed as an effective tool to explore the aerodynamic characteristics of as well as flow features around the vehicle. This study explores crosswind effects on a high-sided lorry on the ground with and without movement through CFD simulations together with wind tunnel tests. Firstly, the aerodynamic forces on a stationary lorry model are measured in a wind tunnel, and the results are compared with the previous measurement results. The CFD with unsteady RANS method is then employed to simulate wind flow around and wind pressures on the stationary lorry. The numerical aerodynamic forces are compared with the wind tunnel test results. Furthermore, the same CFD method is extended to investigate the moving vehicle on the ground in crosswind. The results show that the CFD results match with wind tunnel test results and the current way using aerodynamic coefficients from a stationary vehicle in crosswind is acceptable. The CFD simulation can provide more insights on flow field and pressure distribution which are difficult to be obtained by wind tunnel tests.

저속풍동 시험부 속도교정에 관한 실험적 연구 (An Experimental Study of Test Section Velocity Calibration for Low-Speed Wind Tunnel)

  • 오세윤;이종건;김성철;김상호;안승기
    • 한국항공우주학회지
    • /
    • 제40권3호
    • /
    • pp.230-236
    • /
    • 2012
  • 본 연구의 목적은 풍동 시험부의 속도산출에 필요한 속도측정시스템용 교정계수를 실험적으로 결정하는데 있었다. 교정실험은 국방과학연구소 저속풍동에서 표준 피토관을 이용하여 수행되었으며 이때의 교정속도 영역은 약 10~100 m/s이었다. 풍동교정실험결과의 유효성 평가를 위해 기존의 교정계수 측정결과와의 비교검토를 수행하였으며, 기존 교정 결과들과 잘 부합됨을 확인하였다.

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes

  • Ke, Shitang;Ge, Yaojun;Zhao, Lin;Tamura, Yukio
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.891-908
    • /
    • 2015
  • For a systematic study on wind-induced vibration characteristics of large hyperbolic cooling towers with different feature sizes, the pressure measurement tests are finished on the rigid body models of three representative cooling towers with the height of 155 m, 177 m and 215 m respectively. Combining the refined frequency-domain algorithm of wind-induced responses, the wind-induced average response, resonant response, background response, coupling response and wind vibration coefficients of large cooling towers with different feature sizes are obtained. Based on the calculating results, the parametric analysis on wind-induced vibration of cooling towers is carried out, e.g. the feature sizes, damping ratio and the interference effect of surrounding buildings. The discussion shows that the increase of feature sizes makes wind-induced average response and fluctuating response larger correspondingly, and the proportion of resonant response also gradually increased, but it has little effect on the wind vibration coefficient. The increase of damping ratio makes resonant response and the wind vibration coefficient decreases obviously, which brings about no effect on average response and background response. The interference effect of surrounding buildings makes the fluctuating response and wind vibration coefficient increased significantly, furthermore, the increase ranges of resonant response is greater than background response.