본 연구에서는 전지구 기후모델의 성능을 평가함에 있어 기후 요소와 평가 지표에 따른 분석 결과의 다양성에 대해 살펴보고자 하였다. 미국 남동부 지역을 대상으로 17개의 CMIP5 GCM의 강우량, 일 최대 최저기온, 풍속에 대한 과거기간(1950~2000)의 모의 결과를 같은 기간의 관측치와 비교한 오차와 상관도를 이용하여 정량적으로 평가하였다. 기후 모델 산출물을 효과적으로 분석하기 위해 격자 단위 관측 자료를 평가기준으로 사용하였으며 다양한 형태의 기상 특성에 대한 모의 성능을 다각적으로 진단하기 위해 기후 정보(평균적 기후 통계량, 시간 변동성, 극한 사상 빈도 등)를 16개 지표로 정의하여 평가에 적용하였다. 또한 산정된 오차와 상관도를 기반으로 대상지역에 대한 기후요소별 GCM 성능 순위를 도출하여 비교하였다. 연구 결과, 기온에 대한 기후 특성에 대한 모델 재현성은 전반적으로 뛰어난 반면 강우량 및 풍속에 대한 모델 성능은 일 변동성을 제외한 대부분 지표들에 대해 비교적 낮은 것으로 나타났다. 더불어 모델의 정확도 순위는 기후 요소, 평가 지표, 그리고 오차 산정 방법에 따라 다양하게 나타남을 확인하였다. 특히 IPSL-CM5A-LR 모델은 대상지역에 대한 적용성이 현저히 낮은 것으로 나타났다. 본 연구는 다양한 기후변화 영향 연구에 적합한 모델 선정과 기후 모델의 불확실성을 고려한 합리적 미래 예측을 위해서는 다각적이고 면밀한 모델 평가가 선행되어야 함을 시사한다.
Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.
기상은 교통흐름, 운전자의 주행패턴, 교통사고 등 여러 방면에서 도로교통에 영향을 미치는 중요한 요인이다. 본 연구는 기상상황과 노면상태 사이의 관계에 초점을 맞추어 기계학습을 통해 도로의 노면상태를 추정하는 모델을 개발하였다. 노면 상태의 수집을 위해 실험 차량에 노면센서를 부착하여 '건조', '습윤', '젖음', 3가지 범주로 구분된 노면상태 정보를 수집하였고, 이를 추정하기 위한 변수로 도로의 기하구조 정보(곡률, 구배), 교통정보(교통량), 기상정보(강우량, 습도, 온도, 풍속)를 활용하였다. 노면 상태를 예측하기 위한 알고리즘으로는 다양한 기계학습 알고리즘이 검토되었으며, 그 중 가장 높은 정확도를 보인 'Random forest'를 기반으로 한 2단계 분류모형을 구축하였다. 총 16일의 실측 데이터 중 14일의 데이터를 모델을 학습하는 데 활용하였고, 2일의 데이터를 모형의 정확도를 검증하기 위해 사용하였다. 그 결과 81.74%의 검증 정확도를 가지는 노면상태 예측 모델을 구축하였다. 본 연구의 결과는 기상청에서 관측하는 기상정보로 도로의 노면상태를 추정할 수 있다는 가능성을 보여주며, 새로운 장비나 센서를 설치하지 않고도 기존의 기상 관측 정보와 교통정보 등을 활용하여 노면의 상태를 추정할 수 있음을 시사한다.
서리는 표면 근처의 공기의 이슬점 온도가 빙점 이하일 때 수증기가 승화, 응축되어 땅이나 물체에 얼게 되는 작은 얼음 결정체이다. 서리가 내리면 농작물이 직접 피해를 입는다. 농작물이 낮은 온도에 접촉하면 조직이 얼어서 세포막이나 엽록체가 딱딱해지고 파괴되거나 건조한 세포가 죽습니다. 2020년 7월, 세계 최대 커피 생산국인 브라질 미나스제라이스 주에 갑작스러운 영하의 날씨와 서리가 내려 지역 커피 나무의 약 30%가 피해를 입었다. 이로 인해 피해로 커피값이 크게 올랐고, 피해가 심각한 농가는 농작물이 회복되기까지 3년이 걸리기 때문에 2024년에야 커피를 생산할 수 있다. 본 논문에서는 심한 서리가 내리는 것을 방지하기 위해 기상청이 제공하는 서리 발생 데이터와 기상관측 데이터를 이용해 서리를 예측하려고 했다. 관측 지점의 고도 및 풍속, 온도, 습도, 강수량, 흐림 등의 기상 요인을 반영하여 모델을 구축하였다. XGB, SVM, Random Forest, MLP 모델을 사용하여 다양한 하이퍼 파라미터를 학습 데이터로 적용하여 각 모델에 가장 적합한 모델을 선택하였다. 마지막으로, 결과는 테스트 데이터에서 정확도(acc)와 중요 성공 지수(CSI)로 평가되었다. XGB는 90.4%의 acc와 64.4%의 CSI로 다른 모델에 비해 최고의 모델이었고, SVM은 89.7%의 acc와 61.2%의 CSI로 그 뒤를 이었다. 랜덤 포레스트와 MLP는 약 89%의 acc와 약 60%의 CSI로 비슷한 성능을 보였다.
본 연구는 전산유체역학(computational fluid dynamics, CFD) 모델을 이용하여 도시 지역에서 수목이 PM2.5 저감에 미치는 영향을 조사하였다. 현실적인 수치 모의를 위해, 기상청에서 현업으로 운영 중인 국지예보시스템(LDAPS)이 예측한 기상 자료를 CFD 모델의 초기·경계 자료로 사용하였다. CFD 모델 성능 검증은 연구 대상지 내에 구축된 6개의 센서에서 측정한 PM2.5 농도를 이용하였다. 본 연구에서는 수목이 PM2.5 농도 분포에 미치는 영향을 분석하기 위하여, 수목이 식재 되지 않았다고 가정한 경우, 수목이 식재되어 있지만 바람에 대한 항력 효과만 존재한다고 가정한 경우, 수목의 항력 효과와 침적 효과가 모두 존재한다고 가정한 경우에 대한 수치 실험을 수행하였다. 분석대상 기간 동안 PM2.5 저감 효과가 뚜렷하게 나타난 세 가지 영역 중 군부대 내의 PM2.5 평균 농도를 비교한 결과, 수목이 식재되지 않은 경우는 12.8 ㎍ m-3, 수목의 항력 효과만 고려한 경우는 12.5 ㎍ m-3이 나타났고, 수목의 항력 효과와 침적 효과가 모두 고려한 경우는 6.8 ㎍ m-3가 나타났다. 수목에 의한 건성 침적이 PM2.5 농도를 감소시키는 효과가 있는 것으로 확인되었다.
본 연구에서는 딥러닝을 이용한 모형을 이용해서 우리나라 지역에 대한 서리 발생 예측 모형을 구축하였다. 딥러닝 모형의 학습 데이터로 다양한 기상인자들(최저기온, 풍속, 상대습도, 구름량, 강수량)을 사용하였으며, 기상인자들에 대한 통계적 분석 결과, 서리가 발생한 날과 서리가 발생하지 않은 날에 대해 각 요소별로 유의한 차이가 있는 것을 볼 수 있었다. 단일 딥러닝 모형 3가지와 다중 입력 딥러닝 모형 3가지를 이용하여 서리발생을 추정한 결과, 평균적으로 MLP가 가장 정확도가 낮았으며, LSTM, GRU 순으로 정확도가 높게 나타났고, 다중 입력 딥러닝 모형의 경우 3가지 모형이 거의 비슷한 결과가 나타났지만 그 중 평균적으로 GRU와 MLP를 이용한 모형이 가장 정확도가 높았다. 또한, 단일 딥러닝이 다중 입력 딥러닝에 비해 샘플에 따라 정확도 편차도 더 컸다. 이에 따라 결과적으로 단일 딥러닝 기반의 서리발생 예측 모형보다 다중 입력 딥러닝 기반의 서리발생 예측 모형이 안정성과 정확도와 재현율 측면에서 다소 우수한 것을 확인할 수 있었다.
Modeling the effects of high-rise buildings on thermo-dynamic conditions and meteorological fields over a coastal urban area was conducted using the modified meso-urban meteorological model (Urbanized MM5; uMM5) with the urban canopy parameterization (UCP) and the high-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). Sensitivity simulations was performed during a typical sea-breeze episode (4~8 August 2006). Comparison between simulations with real urban morphology and changed urban morphology (i.e. high-rise buildings to low residential houses) showed that high-rise buildings could play an important role in urban heat island and land-sea breeze circulation. The major changes in urban meteorologic conditions are followings: significant increase in daytime temperature nearly by $1.0^{\circ}C$ due to sensible heat flux emitted from high density residential houses, decrease in nighttime temperature nearly by $1.0^{\circ}C$ because of the reduction in the storage heat flux emitted from high-rise buildings, and large increase in wind speed (maximum 2 m $s^{-1}$) during the daytime due to lessen drag-force or increased gradient temperature over coastal area.
In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.
Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.
International Journal of Fluid Machinery and Systems
/
제9권2호
/
pp.182-193
/
2016
Introduction of intermittent electricity production systems like wind and solar power to electricity market together with the deregulation of electricity markets resulted in numerous start/stops, load variations and off-design operation of water turbines. Hydraulic turbines suffer from the varying loads exerted on their stationary and rotating parts during load variations since they are not designed for such operating conditions. Investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of a rotating vortex rope (RVR) in the draft tube. The RVR induces pressure pulsations in the axial and rotating directions called plunging and rotating modes, respectively. This results in oscillating forces with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. This study investigates the effect of transient operations on the pressure fluctuations exerted on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors for this purpose. The model was run in off-cam mode during different load variations. The results showed that the transients between the best efficiency point and the high load occurs in a smooth way. However, during transitions to the part load a RVR forms in the draft tube which induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode. Formation of the RVR during the load rejections coincides with sudden pressure change on the runner while its mitigation occurs in a smooth way.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.