• Title/Summary/Keyword: wind model

Search Result 3,596, Processing Time 0.029 seconds

Scheme and application of phase delay spectrum towards spatial stochastic wind fields

  • Yan, Qi;Peng, Yongbo;Li, Jie
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.433-455
    • /
    • 2013
  • A phase delay spectrum model towards the representation of spatial coherence of stochastic wind fields is proposed. Different from the classical coherence functions used in the spectral representation methods, the model is derived from the comprehensive description of coherence of fluctuating wind speeds and from the thorough analysis of physical accounts of random factors affecting phase delay, building up a consistent mapping between the simulated fluctuating wind speeds and the basic random variables. It thus includes complete probabilistic information of spatial stochastic wind fields. This treatment prompts a ready and succinct scheme for the simulation of fluctuating wind speeds, and provides a new perspective to the accurate assessment of dynamic reliability of wind-induced structures. Numerical investigations and comparative studies indicate that the developed model is of rationality and of applicability which matches well with the measured data at spatial points of wind fields, whereby the phase spectra at defined datum mark and objective point are feasibly obtained using the numerical scheme associated with the starting-time of phase evolution. In conjunction with the stochastic Fourier amplitude spectrum that we developed previously, the time history of fluctuating wind speeds at any spatial points of wind fields can be readily simulated.

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

Performance Analysis of the NREL Phase IV Wind Turbine by CFD (CFD에 의한 NREL Phase IV 풍력터빈 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF

Verification of a tree canopy model and an example of its application in wind environment optimization

  • Yang, Yi;Xie, Zhuangning;Tse, Tim K.T.;Jin, Xinyang;Gu, Ming
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • In this paper, the method of introducing additional source/sink terms in the turbulence and momentum transport equations was applied to appropriately model the effect of the tree canopy. At first, the new additional source term for the turbulence frequency ${\omega}$ equation in the SST k-${\omega}$ model was proposed through theoretical analogy. Then the new source/sink term model for the SST k-${\omega}$ model was numerically verified. At last, the proposed source term model was adopted in the wind environment optimal design of the twin high-rise buildings of CABR (China Academy of Building Research). Based on the numerical simulations, the technical measure to ameliorate the wind environment was proposed. Using the new inflow boundary conditions developed in the previous studies, it was concluded that the theoretically reasonable source term model of the SST k-${\omega}$ model was applicable for modeling the tree canopy flow and accurate numerical results are obtained.

CFD evaluation of a suitable site for a wind turbine on a trapezoid shaped hill

  • Unchai, Thitipong;Janyalertadun, Adun
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.75-88
    • /
    • 2014
  • The computational fluid dynamic is used to explore new aspects of the hill flow. This analysis focuses on flow dependency and the comparison of results from measurements and simulations to show an optimization turbulent model and the possibility of replacing measurements with simulations. The first half of the paper investigates a suitable turbulence model for determining a suitable site for a wind turbine. Results of the standard k-${\varepsilon}$ model are compared precisely with the measurements taken in front of the hilltop, The Reynolds Stress Model showed exact results after 1.0 times of hill steepness but the standard k-${\varepsilon}$ model and standard k-${\omega}$ model showed greater underestimation. In addition, velocity flow over Pha Taem hill topography and the reference geometry shape were compared to find a suitable site for a turbine in case the actual hill structure was associated with the trapezoid geometric shape. Further study of geometry shaped hills and suitable sites for wind turbines will be reported elsewhere.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

A Study of Wind Pressure Distribution for a Rectangular Building Using CFD (CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구)

  • Shin, Dongshin;Park, Jaehyun;Kang, Bomi;Kim, Eunmi;Lim, Hyeongjun;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results

  • Bekele, S.A.;Hangan, H.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.337-346
    • /
    • 2002
  • Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.

Assessment of Wind Power Prediction Using Hybrid Method and Comparison with Different Models

  • Eissa, Mohammed;Yu, Jilai;Wang, Songyan;Liu, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1089-1098
    • /
    • 2018
  • This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.