• Title/Summary/Keyword: wind mixing

Search Result 174, Processing Time 0.02 seconds

Variations of Temperature and Salinity in Kugum Suro Channel (거금수로 해역의 수온과 염분의 변동)

  • CHOO Hyo-Sang;LEE Gyu-Hyong;YOON Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Temperature and salinity were observed in Kugum Suro Channel in February, April, August and October 1993. Temperature ranged from $7.0^{\circ}C\;to\;25.0^{\circ}C$ throughout the year and its variation was about $18^{\circ}C$. The maximum temperature difference between surface and bottom was less than $0.75^{\circ}C$ for a year, which meant that the temperature stratification in Kugum Suro Channel was considerably week. Salinity had also a small variation range of less than $0.5\%_{\circ}$. Salinity varied from $34.0\%_{\circ}$ in April to $30.0\%_{\circ}$ in August and its fluctuation patterns were quite similar to the seasonal variations of the precipitation and the duration of sunshine observed at Kohung Weather station. Seasonal variation of sea water density in T-S diagram showed that the water mass in Kugum Suro Channel could be largely affected by regional atmospheric conditions. Temperature increased in ebb tide and decreased in flood tide, but salinity decreased in ebb tide and increased in flood tide for a day. The period of fluctuations in temperature and salinity measured for 25 hours was nearly coincident with the semi-diurnal tide which was predominant in that region. Stratification parameters computed in Kugum Suro Channel areas were less than $4.0J/m^3$ the year round, which indicated that vortical mixing from the bottom boundary caused by tidal current played an important role in deciding the stratification regime in Kugum Suro Channel. In estimating the equation which defines stratification and mixing effects in the observed areas, the tidal mixing term ranged from $4.7J/M^3\;to\;14.1J/m^3$ was greater than any other terms like solar radiation, river discharge and wind mixing.

  • PDF

Response of Water Temperature in Korean Waters Caused by the Passage of Typhoons (태풍 이동 경로에 따른 한반도 연근해 수온의 반응)

  • Kim, Sang-Woo;Lim, Jin-Wook;Lee, Yoon;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.508-520
    • /
    • 2016
  • In this study, variations in water temperature after the passage of typhoons in Korean waters from 2009-2015 were analyzed. Sea surface temperature (SST) images derived from satellite remote sensing data were used, and water temperature information came from real-time mooring buoys at Yangyang, Gangneung, Samcheok and Yeoungdeok, while wind data was supplied by the Korea Meteorological Administration. Differences in SST observed before and after the passage of a typhoon using the SST images were found to be affected by wind direction as well as hot and cool seasonal tendencies. Coastal water temperatures of the eastern part of the Korean peninsula, located to the right of a typhoon, as in the case of typhoons Muifa, Chanhom, Nakri and Tembin, were lowered by a coastal upwelling system from southerly winds across the water's surface at depths of 15m and 25m. In particular, typhoons Chanhom and Tembin decreased water temperatures by about $8-11^{\circ}C$ and $16^{\circ}C$, respectively. However, temperatures to the left of the typhoons were increased by a downwelling of offshore seawater with a high temperature through the mid and lower seawater layers. After the passage of the typhoons, further mixing of seawater at a higher or lower temperature due to southerly or northerly winds, according to the context, lasted for 1-2 or 4 days, respectively.

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

A Study on Changes in Local Meteorological Fields due to a Change in Land Use in the Lake Shihwa Region Using Synthetic Land Cover Data and High-Resolution Mesoscale Model (합성토지피복자료와 고해상도 중규모 모형을 이용한 시화호 지역의 토지이용 변화에 따른 주변 기상장 변화 연구)

  • Park, Seon Ki;Kim, Jee-Hee
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.405-414
    • /
    • 2011
  • In this study, the influence of a change in land use on the local weather fields is investigated around the Lake Shihwa area using synthetic land cover data and a high-resolution mesoscale model - the Weather Research and Forecasting (WRF). The default land cover data generally used in the WRF is based on the land use category of the United States Geological Survey (USGS), which erroneously presents most land areas of the Korean Peninsula as savannas. To revise such a fault, a multi-temporal land cover data, provided by the Ministry of Environment of Korea, was employed to generate a land cover map of 2005 subject to the land use in Korea at that time. A new land cover map of 1989, before the construction of the Lake Shihwa, was made based on the 2005 map and the Landsat 4-5 TM satellite images of two years. Over the areas where the land use had been changed (e.g., from sea to wetlands, towns, etc.) due to the Lake Shihwa development project, the skin temperature decreased by up to $8^{\circ}C$ in the winter case while increased by as much as $14^{\circ}C$ in the summer case. Changes in the water vapor mixing ratio were mostly affected by advection and topography in both seasons, with considerable increase in the summer case due to continuous sea breeze. Local decrease in water vapor occurred over high land use change areas and/or over downstream of such areas where alteration in wind fields were induced by changes in skin temperature and surface roughness at the areas of land use changes. The albedo increased by about 0.1% in the regions where sea was converted into wetland. In the regions where urban areas were developed, such as Songdo New Town and Incheon International Airport, the albedo increased by up to 0.16%.

Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia (지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향)

  • Kang, Jeon-Ho;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station (이어도해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측)

  • Lee, Hee-Choon;Lee, Bang-Yong;Kim, Joon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Surface energy and $CO_2$ fluxes have been measured over an ocean at Ieodo Ocean Research Station of KORDI since May 2003. Eddy covariance technique, which is a direct flux measurement, is used to quantitatively understand the interaction between the ocean surface and the atmospheric boundary layer. Although fluxes were continuously measured during the period from May 2003 to February 2004, the quality control of these data yielded <20% of data retrieval. The atmospheric stability did not show any distinct dirunal patterns and remained near-neutral to stable from May to June but mostly unstable during fall and winter in 2003. Sensible heat flux showed a good correlation with the difference between the sea water temperature and the air temperature. The maximum fluxes of sensible heat and latent heat were $120Wm^{-2}$ and $350Wm^{-2}$ respectively, with an averaged Bowen ratio of 0.2. The ocean around the tower absorbed $CO_2$ from the atmosphere and the uptake rates showed seasonal variations. Based our preliminary results, the daytime $CO_2$ flux was steady with an average of $-0.1 mgCO_2m^{-2}s^{-1}$ in summer and increased in winter. The nighttime $CO_2$ uptake was greater and fluctuating, reaching up to $-0.1 mgCO_2m^{-2}s^{-1}$ but these data require further examination due to weak turbulent mixing at nighttime. The magnitude of $CO_2$ flux was positively correlated with the half hourly changes in horizontal mean wind speed. Due to the paucity of quality data, further data collection is needed for more detailed analyses and interpretation.

Seasonal Variation of Planktonic Foraminifera Assemblage in response to Seasonal Shift of Inter-Tropical Convergence Zone in the Northeastern Equatorial Pacific (적도수렴대의 위치변화에 따른 북동태평양 적도해역의 부유성 유공충 군집의 계절변동)

  • Lee, Yuri;Asahi, Hirofumi;Woo, Han Jun;Kim, Hyung Jeek;Lee, Seong-Joo;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.437-445
    • /
    • 2014
  • A time-series sediment trap was operated at a water depth of 4950 m from July 2003 to May 2004 at KOMO station ($10^{\circ}30^{\prime}N$, $131^{\circ}20^{\prime}W$) in the northeastern equatorial Pacific, with the aim of understanding the temporal variation of planktonic foraminifera assemblages in response to the seasonal shift of Inter-Tropical Convergence Zone (ITCZ). A total of 22130 planktonic foraminifera specimens belonging to 30 species and 11 genera were identified, which shows a distinct seasonal variation with high values (125~288 specimens $m^{-2}day^{-1}$) in the winter to spring (December-May) and low values (16~23 specimens $m^{-2}day^{-1}$) in the fall (September-November). In addition, seasonal ecological differences of foraminifera assemblages are distinctly recognizable: omnivorous foraminifera occurred predominantly during the summer season, whereas herbivorous ones were dominant during the winter season. Such seasonal variations correspond to the seasonal shift of the ITCZ. Enhanced occurrence of herbivorous species during the winter-spring season seems a result of surface water mixing generated by the southward shift of the ITCZ. The increase in omnivorous species during the summer season may be due to the northward movement of the ITCZ caused by weakened wind speed, resulting in the intensification of water column stratification and nutrient-poor environment. A significant reduction of planktonic foraminifera specimens during the fall is attributed to heavy precipitation and reduction in light intensity.

Maritime Atmospheric Boundary Layer Observed By L-band Doppler radar (도플러 레이더를 이용한 해안지역의 대기경계층 분석 연구)

  • Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.977-984
    • /
    • 2000
  • Atmospheric boundary layer over equatorial maritime continent was analyzed with Doppler radar. An L-band (1357.5 MHz) boundary layer radar (BLR) has been in continuous successful operation in Selpong, Indonesia(6.45, 106.7E), since November 1992. The performance of the BLR with respect to the observation height range and the wind measurement reliability has been examined on the basis of simultaneous meteorological observations. In the dry season (10-12 October 1993), we have found two types of strong echo structures appearing systematically in the equatorial planetary boundary layer with diurnal variations on clear days. The first type is the striking appearance of a strong echo layer ascending from below 300 m (in the morning) to above 3-5 km (in the afternoon), which is identified with a diurnal variation of the top of the mixing planetary boundary layer. As expected, it is higher in the Indonesian equatorial region than in midlatitudes. Another type is a layered echo appearing at 2-3 km heights from nighttime to morning, which seem to be coincident with humidity gaps. In the rainy season (20-21 February 1994), the height of the atmospheric mining was lower than that in the dry season.

  • PDF

Vertical Distribution and Potential Risk of Particulate Polycyclic Aromatic Hydrocarbons in High Buildings of Bangkok, Thailand

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1865-1877
    • /
    • 2013
  • Vertical variations of polycyclic aromatic hydrocarbon (PAH) concentrations in $PM_{10}$ were investigated in order to assess the factors controlling their behavior in the urban atmosphere of Bangkok City, Thailand. Air samples were collected every three hours for three days at three different levels at Bai-Yok Suit Hotel (site-1 and site-2) and Bai-Yok Sky Hotel (site-3) in February $18^{th}-21^{st}$, 2008. The B[a]P concentration showed a value 0.54 fold, lower than the United Kingdom Expert Panel on Air Quality Standard (UK-EPAQS; i.e. 250 pg $m^{-3}$) at the top level. In contrast, the B[a]P concentrations exhibited, at the ground and middle level, values 1.50 and 1.43 times higher than the UK-EPAQS standard respectively. PAHs displayed a diurnal variation with maximums at night time because of the traffic rush hour coupled with lower nocturnal mixing layer, and the decreased wind speed, which consequently stabilized nocturnal boundary layer and thus enhanced the PAH contents around midnight. By applying Nielsen's technique, the estimated traffic contributions at Site-3 were higher than those of Site-1: about 10% and 22% for Method 1 and Method 2 respectively. These results reflect the more complicated emission sources of PAHs at ground level in comparison with those of higher altitudes. The average values of incremental individual lifetime cancer risk (ILCR) for all sampling sites fell within the range of $10^{-7}-10^{-6}$, being close to the acceptable risk level ($10^{-6}$) but much lower than the priority risk level ($10^{-4}$).

Temperature Monitoring of Vegetation Models for the Extensive Green Roof (관리조방형 옥상녹화의 식재모델별 표면온도 모니터링)

  • Youn, Hee-Jung;Jang, Seong-Wan;Lee, Eun-Heui
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.89-96
    • /
    • 2013
  • Green roofs can reduce surface water runoff, provide a habitat for wildlife moderate the urban heat island effect, improve building insulation and energy efficiency, improve the air quality, create aesthetic and amenity value, and preserve the roof's waterproofing. Green roofs are mainly divided into three types : intensive, simple-intensive, and extensive. Especially, extensive roof environment is a harsh one for plant growth; limited water availability, wide temperature fluctuations, high exposure to wind and solar radiation create highly stressed environment. This study, aimed at extensive green roof, was carried out on the rooftop of the library at Seoul Women's Univ. from October to November, 2012 and from March to August, 2013. To suggest the most effective vegetation model for biodiversity and heat island mitigation, surface temperatures were monitored by each vegetation model. We found that herbaceous plants of Aster sphathulifolius, Aceriphyllum rossii and Belamcanda chinensis, shrub of Syringa patula 'Miss Kim', Thymus quinquecostatus var. japonica, Sedum species can mixing each other. Among them, the vegetation models including Sedum takesimense, Aster sphathulifolius, Thymus quinquecostatus var. japonica was more effective on the surface temperature mitigation, because the species have the tolerance and high ratio of covering, and also in water. Especially, in the treatment of bark mulching, they helped to increase the temperature of vegetation models. In the case of summer, temperature mitigation of vegetation models were no significant difference among vegetation types. Compared to surface temperature of June, July and August were apparent impact of temperature mitigation, it shows that temperature mitigation are strongly influenced by substrate water content.