• Title/Summary/Keyword: wind load effect

Search Result 307, Processing Time 0.029 seconds

Wind-induced dynamic response and its load estimation for structural frames of circular flat roofs with long spans

  • Uematsu, Yasushi;Yamada, Motohiko
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • This paper describes a simple method for evaluating the design wind loads for the structural frames of circular flat roofs with long spans. The dynamic response of several roof models were numerically analyzed in the time domain as well as in the frequency domain by using wind pressure data obtained from a wind tunnel experiment. The instantaneous displacement and bending moment of the roof were computed, and the maximum load effects were evaluated. The results indicate that the wind-induced oscillation of the roof is generally dominated by the first mode and the gust effect factor approach can be applied to the evaluation of the maximum load effects. That is, the design wind load can be represented by the time-averaged wind pressure multiplied by the gust effect factor for the first mode. Based on the experimental results for the first modal force, an empirical formula for the gust effect factor is provided as a function of the geometric and structural parameters of the roof and the turbulence intensity of the approach flow. The equivalent design pressure coefficients, which reproduce the maximum load effects, are also discussed. A simplified model of the pressure coefficient distribution is presented.

Wind load effects and equivalent static wind loads of three-tower connected tall buildings based on wind tunnel tests

  • Ke, Shitang;Wang, Hao;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.967-988
    • /
    • 2016
  • Due to the significant aerodynamic interference from sub-towers and surrounding tall buildings, the wind loads and dynamic responses on main tower of three-tower connected tall building typically change especially compared with those on the isolated single tall building. This paper addresses the wind load effects and equivalent static wind loads (ESWLs) of three-tower connected tall building based on measured synchronous surface pressures in a wind tunnel. The variations of the global shape coefficients and extremum wind loads of main tower structure with or without interference effect under different wind directions are studied, pointing out the deficiency of the traditional wind loads based on the load codes for the three-tower connected tall building. The ESWLs calculation method based on elastic restoring forces is proposed, which completely contains the quasi-static item, inertia item and the coupled effect between them. Then the wind-induced displacement and acceleration responses for main tower of three-tower connected tall building in the horizontal and torsional directions are investigated, subsequently the structural basal and floor ESWLs under different return periods, wind directions and damping ratios are studied. Finally, the action mechanism of interference effect on structural wind effects is investigated. Main conclusions can provide a sientific basis for the wind-resistant design of such three-tower connected tall building.

Study on the Effect of Earthquake Loads for Fixed Offshore Wind Turbines According to Soil Type (지반 종류에 따른 고정식 해상 풍력발전기 지진 하중 영향 연구 )

  • Yongoon Oh;Jeonggi Kim;Miseon Kim;Jonghun Jung;Johyug Bang
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 2023
  • In this study, using the commercial software Bladed developed by DNV for integrated load calculation of wind turbines, the generation of seismic waves according to soil type based on Korea's domestic regulations, and load calculation considering earthquake conditions were performed according to the IEC standard, and load in the main coordinate system of the fixed offshore wind turbine was calculated. By comparing the calculated load with the design load of the fixed offshore wind turbine, the effect of earthquake loads according to soil type on the main components of fixed offshore wind turbines was evaluated. As a result of the evaluation, when an earthquake load on a wind turbine is considered, the effect of the earthquake load is related to the natural frequency of the major components and the magnitude of the adjacent acceleration in the earthquake response spectrum, and the earthquake load differs according to soil type and may exceed the design load.

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.

A Study on Fluctuating Wind Profile in CFD Simulation for Evaluating Wind Load (CFD 시뮬레이션을 이용한 풍하중 산정 시 변동풍속 프로파일에 관한 연구)

  • Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. 'Ansys fluent' software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.

Wind Load Analysis owing to the Computation Fluid Dynamics and Wind Tunnel Test of a Container Crane (컨테이너 크레인의 전산유동해석과 풍동실험에 의한 풍하중 분석)

  • Lee, Su-Hong;Han, Dong-Seop;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Container cranes are vulnerable structure to difficult weather conditions bemuse there is no shielding facility to protect them from strong wind. This study was carried out to analyze the effect of wind load on the structure of a container crane according to the change of the boom shape using wind tunnel test and computation fluid dynamics. And we provide a container crane designer with data which am be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. In this study, we applied mean wind load conformed to 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field was divided as interval of 10 degrees to analyze the effect according to a wind direction. In this conditions, we carried out the wind tunnel test and the computation fluid dynamic analysis and than we analyzed the wind load which was needed to design the container crane.

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

Study on the effect of wake on the performance and load of a downstream wind turbine (하류 풍력발전기의 성능 및 하중에 대한 후류영향 연구)

  • Son, Jaehoon;Paek, Insu;Yoo, Neungsoo;Nam, Yoonsu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of wake on the performance and load of a downstream wind turbine on a floating platform is investigated with a computer simulation in this study. The floating platform consists of a square platform having a dimension of $200m{\times}200m$ with four 2 MW wind turbines installed. For the simulation, only two wind turbines in series with the wind direction were considered and the floating platform was assumed to be stationary due to its large size. Also, a commercial program based on multi-body dynamics and eddy viscosity wake model was used. It was found from simulation that the power from the downstream wind turbine could be reduced by more than 50% of the power from the upstream wind turbine. However, due to the increase in the turbulence intensity, the power is greater but more fluctuating than the power produced by a wind turbine experiencing the same wind speed without wake. Also, it was found that the load of the down stream wind turbine be comes lower than the load of the upstream wind turbine but higher than the load of a wind turbine experiencing the same wind speed without wake.

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.