• Title/Summary/Keyword: wind intensity

Search Result 440, Processing Time 0.03 seconds

Effects of deck's width-to-depth ratios and turbulent flows on the aerodynamic behaviors of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lan, Chao-Yuan
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.263-278
    • /
    • 2003
  • This study investigates the effects of a bridge deck's width-to-depth (B/H) ratio and turbulence on buffeting response and flutter critical wind speed of long-span bridges by conducting section model tests. A streamlined box section and a plate girder section, each with four B/H ratios, were tested in smooth and turbulent flows. The results show that for the box girders, the response increases with the B/H ratio, especially in the vertical direction. For the plate girders, the vertical response also increases with the B/H ratio. However, the torsional response decreases as the B/H ratio increases. Increasing the B/H ratio and intensity of turbulence tends to improve the bridge's aerodynamic stability. Experimental results obtained from the section model tests agree reasonably with the calculated results obtained from a numerical analysis.

A Research on the Approximate Formulae for the Speed Loss at Sea (해상에서의 선속 손실량 산정을 위한 약산식 개발 연구)

  • KWON YOUNG-JOONG;KIM DAI YOUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.90-93
    • /
    • 2005
  • An improved approximate formula is presented for Series 60 forms, modifying the approximate formula, developed by the Author in 1983. The weather formula is based on interpretations of detailed calculations of speed loss, due to wind(van Berlekom), motions(Maruo), and wave reflection resistance(Kwon). Comparison is made between the result of the approximate formula and the one of detailed calculation. The result of the formula is also compared with some published full-scale data for speed loss.

Experimental Investigation on the Turbulence Augmentation of a Gun-type Gas Burner by Slits and Swirl Vanes

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1819-1828
    • /
    • 2004
  • The purpose of this paper is to investigate the effects of slits and swirl vanes on the turbulence augmentation in the flow fields of a gun-type gas burner using an X-type hot-wire probe. The gun-type gas burner adopted in this study is composed of eight slits and swirl vanes located on the surface of an inclined baffle plate. Experiment was carried out at a flow rate of 450 ι/min in burner model installed in the test section of subsonic wind tunnel. Swirl vanes playa role diffusing main flow more remarkably toward the radial direction than axial one, but slits show a reverse feature. Consequently, both slits and swirl vanes remarkably increase turbulence intensity in the whole range of a gun-type gas burner with a cone-type baffle plate.

Analysis of 32m aerostat gust load using non-linear cable equation (비선형 테더 방정식을 이용한 에어로스탯 돌풍하중해석)

  • Kang, Wang-Gu;Lee, In;Kim, Dong-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.757-761
    • /
    • 2008
  • The aerostat dynamic equation of motion has been built including the tether cable dynamic effects. A numerical program to solve the derived equation of motion has been developed. The dynamic motion of the 32m aerostat has been analyzed under discrete gust and continuous turbulence. The aerostat behaviors under discrete gust which represents a deterministic approach for determining design loads for manned aircraft are solved to verify the effect of aerostat mechanical properties on the aerostat dynamic behavior. Continuous turbulences are simulated for each given altitude, translational mean wind velocity and gust intensity. Dynamic behaviors of the 32m aerostat are simulated for each continuous turbulence conditions. Translational and vertical velocity and pitching behavior and tether reaction force are monitored for each simulation.

  • PDF

Load comparison of 750kW WTGS by field test (750kW 풍력발전기 현장시험을 통한 하중 비교)

  • Bang, Jo-Hyug;Hong, Hyeok-Soo;Park, Jin-Il;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.303-306
    • /
    • 2008
  • This study proposes an essential process of type certificate, which is load comparison for proving the calculated design load. The load measurement was carried out according to IEC 61400-13 standard and the load calculation was performed with same condition using FLEX 5 code. For more accurate load simulation, the controller parameter of original model at the design stage was modified to site optimized value and some node points are added to coincidence with measurement. The load comparison was performed with various wind parameter, turbulence intensity and wind shear. As a result, simulated loads ware good agreed with the measured load. Therefore, the calculated design loads according to IEC 61400-1 standard were proved to valid.

  • PDF

A Study on the Standard Durable Years of Pipe Framed Greenhouses (파이프 골조 온실 구조물의 표준내용연수 연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.96-101
    • /
    • 2001
  • In designing the greenhouse structures, snow and wind loads must be estimated on the basis of the probability of occurrence of snow or wind storms of a given intensity. The recurrence interval chosen depends on the standard durable years and safety factors of the greenhouse. This study was carried out to find the standard durable years of pipe framed greenhouses. Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse frames. A secular change of collapse loads and flexural rigidity for galvanized steel pipes were analyzed with the parts buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated as follows ; the small scale pipe houses of movable type is 7∼8 years and the large scale pipe houses of fixed type is 14∼15 years.

  • PDF

The Properties of Optimal Passive Tuned Mass Dampers (최적 수동 동조질량감쇠기의 특성)

  • 노필성;강병두;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.165-172
    • /
    • 1996
  • Recently, the response of a high-rise building to external dynamic force created by wind and earthquake has received much attention. This response is dependent on wind intensity, surrounding environment, building size, shape, mass, stiffness and amount of energy dissipation available in the system. The study has been done on these parameters. Attempts have been made to increase the damping in building system and thereby reduce structural response. These attempts have centered on adding an energy-dissipative system(passive tuned mass damper; passive TMD) to the building system and increasing the overall effective damping. In this paper the optimum condition of passive TMD will be derived with respect to random excitation and the properties of the optimum condition will have been studied.

  • PDF

Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences (능동 난류 생성을 통한 장대 교량의 공력 특성 비교)

  • Lee, Seungho;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.341-349
    • /
    • 2011
  • The main purpose of this study is to investigate the affect of various turbulence properties on aerodynamic characteristics of twin box bridge section. To achieve this goal, active turbulence generator which successfully simulated various target turbulences was developed in the wind tunnel. From the wind tunnel tests, turbulence integral length scale did not affect on the aerodynamic forces and flutter derivatives except for the $A_1^*$ curve. Turbulence intensity gave slight effect on the unsteady aerodynamic force, but turbulence integral length scale did not affect the self-excited forces except vertical direction component.

Comparison between reinforced concrete designs based on the ACI 318 and BS 8110 codes

  • Tabsh, Sami W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.467-477
    • /
    • 2013
  • Municipalities in the United Arab Emirates approve reinforced concrete design of building structures to follow either the ACI 318 or the BS 8110 code. Since the requirements of these codes are different from each, there is a need to compare the structural demand in the two codes. The main objective of this study is to compare the design requirements of the ACI 318 code with the BS 8110 code for the flexural, shear and axial compression limit states. The load factors and load combinations in the two codes are also compared. To do so, a large number of cross-sections with different geometries, material properties, and reinforcement ratios are analyzed following the procedures in the two codes. The relevant factored load combinations in the two codes are also investigated for a wide range of live-to-dead load ratios and for various wind-to-dead load ratios. The study showed that the differences between the design capacities in the ACI 318 and BS 8110 codes are minor for flexure, moderate for axial compression, and major for shear. Furthermore, the factored load combinations for dead load, live load and wind in the two codes yield minor-to-moderate differences, depending on the live-to-dead load ratio and intensity of wind.

Porous Fence Effects on Surface-Pressure of a Triangular Prism in Atmospheric Boundary Layer (다공성 방풍펜스가 대기경계층내에 놓인 삼각프리즘 표면압력에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2670-2680
    • /
    • 1996
  • Effeccs of porous wind fence on surface-pressure around 2-dimensional prism model of triangular cross-section were investigated experimentally. The pressure data were obtained at a Reynolds number based on the model height of Re=2.1*10$^{5}$ . Flow visualization also carried out to investigate the flow structure qualitatively. The mean velocity and turbulent intensity profiles measured at fence location were well fitted to the neutral atmospheric surface boundary layer over the open terrain. Various fences with different porosity and height were tested to investigate their effects on the surface pressure acting on a prism model at different locations. As the results, porous fence with porosity 40 ~ 50% is most effective for abating wind erosion. With decreasing porosity of the fence, pressure fluctuations on the model surface are increased. The mean pressure coefficients are decreased only when the fence height is greater than the model height. The effect of distance between wind fence and triangular prism was not significant, compared to that of the fence porosity and height.