• Title/Summary/Keyword: wind generation farm

Search Result 111, Processing Time 0.039 seconds

A Study on the Power Factor Improvement of V47-660 kW Wind Turbine Generation System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 역률개선에 관한 연구)

  • Kim, Eel-Hwan;Jeon, Young-Jin;Kim, Jeong-Woong;Kang, Geong-Bo;Huh, Jong-Chul;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a study on the power factor improvement of V47- 660 [kW] Wind Turbine Generation System (WTGS) in Jeju wind farm, as a model system in this paper. In this system, the power factor correction is controlled by the conventional method with power condensor banks. Also, this system has only four bank steps, and each one capacitor bank step is cut in every one second when the generator has been cut in. This means that it is difficult to compensate the reactive power exactly according to the variation of them. Actually, model system has very low power factor in the area of low wind speed, which is almost from 4 to 6 [m/s]. This is caused by the power factor correction using power condenser bank. To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter using IGBT switching device. Finally, to verify the proposed method, the results of computer simulation using Psim program are presented to support the discussions.

Hybrid Communication Network Architectures for Monitoring Large-Scale Wind Turbine

  • Ahmed, Mohamed A.;Kim, Young-Chon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1626-1636
    • /
    • 2013
  • Nowadays, a rapid development in wind power technologies is occurring compared with other renewable energies. This advance in technology has facilitated a new generation of wind turbines with larger capacity and higher efficiency. As the height of the turbines and the distance between turbines increases, the monitoring and control of this new generation wind turbines presents new challenges. This paper presents the architectural design, simulation, and evaluation of hybrid communication networks for a large-scale wind turbine (WT). The communication network of WT is designed based on logical node (LN) concepts of the IEC 61400-25 standard. The proposed hybrid network architectures are modeled and evaluated by OPNET. We also investigate network performance using three different technologies: Ethernet-based, WiFi-based, and ZigBee-based. Our network model is validated by analyzing the simulation results. This work contributes to the design of a reliable communication network for monitoring and controlling a wind power farms (WPF).

Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed (풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측)

  • Kim, Yeong-ju;Jeong, Min-a;Son, Nam-rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1085-1092
    • /
    • 2017
  • In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.

Development of Modular Control System Based on Closed-Loop Control for Wind Farms

  • Ji, Hyunho;Kim, Taehyoung;Lim, Jeongtaek;Ham, Kyung Sun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.17-24
    • /
    • 2021
  • The use of renewable energy sources for power generation has been steadily increasing. Power generation using renewable energy has the advantage of not generating carbon but has the disadvantage of high volatility depending on the weather. This volatility makes stable power supply difficult. Curtailment is occurring to address volatility. Various facilities are operated together to solve the loss caused by the curtailment. The existing SCADA must be modified for turbine control reflecting the conditions of various facilities. However, since it is difficult to modify SCADA, a modular control system is required. In this study, we propose Modular Control System Based on Closed-Loop Control for Wind Farms. Since the control logic can be changed without modifying SCADA, it is easy to respond to changes. The developed modular control system was evaluated as a lab test and confirmed to operate smoothly. Through future research, the experiment will be conducted by applying a modular control system to the actual wind farm.

A study on comparing short-term wind power prediction models in Gunsan wind farm (군산풍력발전단지의 풍력발전량 단기예측모형 비교에 관한 연구)

  • Lee, Yung-Seop;Kim, Jin;Jang, Moon-Seok;Kim, Hyun-Goo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.585-592
    • /
    • 2013
  • As the needs for alternative energy and renewable energy increase, there has been a lot of investment in developing wind energy, which does not cause air pollution nor the greenhouse gas effect. Wind energy is an environment friendly energy that is unlimited in its resources and is possible to be produced wherever the wind blows. However, since wind energy heavily relies on wind that has unreliable characteristics, it may be difficult to have efficient energy transmissions. For this reason, an important factor in wind energy forecasting is the estimation of available wind power. In this study, Gunsan wind farm data was used to compare ARMA model to neural network model to analyze for more accurate prediction of wind power generation. As a result, the neural network model was better than the ARMA model in the accuracy of the wind power predictions.

Modeling and Analysis of Sangmyeong Wind Farm with HESS (HESS가 연계된 상명풍력발전단지의 모델링과 해석)

  • Shin, Hyun;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.422-423
    • /
    • 2019
  • In accordance with the Carbon-Free Island by 2030 policy of Jeju Special Self-Governing Province, renewable energy sources are increasing in Jejudo Island. Due to the intermittent output characteristics of wind turbines, one of the renewable energy sources, which can cause unbalanced system conditions between the demand load and the power generation of Jejudo Island. The Korea Power Exchange limits the output of wind turbines for stabilizing the Jeju power system. Therefore, this paper proposes a method to supply a limited output of Sangmyeong Wind Farm in Jeju Power system to Energy Storage System(ESS) and Water Electrolysis Device(WED). The voltage and frequency fluctuation of the Jeju power system is checked accordingly. The simulation results are performed using the PSCAD/EMTDC program.

  • PDF

Analyzing Site Characteristics and Suitability for Wind Farm Facilities in Forest Lands (산지 내 풍력발전단지 입지 특성 및 적합성 분석)

  • Kwon, Soon-Duk;Joo, Woo-Yeong;Kim, Won-Kyung;Kim, Jong-Ho;Kim, Eun-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.86-100
    • /
    • 2014
  • The purposes of this study are to provide a guideline for the suitability of wind farm facilities in forest lands and to suggest improvement plans of policies and systems to minimize the damage of forest lands. First, we implemented a literature review and field surveys to examine and select factors for the suitability of wind farm facilities in forest lands. Spatial database for selected location factors of wind farm facilities in forest lands was constructed to develop the suitability model for locating wind farm facilities focusing on Gangwon-do. Data used in this study include wind power resource, legal mountainous preserved area, forest roads, developed areas, forest class, and other spatial data. In order to find specific-sized potential areas for a certain number of wind farm turbines, we used block statistics and focal statistics methods. As a result, the areas for potential wind farm locations were 1,261ha from a block statistics method and 1,411ha from a focal statistics method. Based on the outputs of this research, it is required to make an urgent solution for the prevention of forest disaster and to prepare reduction measures for the destruction of ridge landscape.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators (이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석)

  • Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

Modeling and Simulation of a Permanent-Magnetic Synchronous Generator Wind Turbine (영구자석 동기형 풍력발전시스템 모델링 및 시뮬레이션)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.462_463
    • /
    • 2009
  • When introducing the existing distribution system, load and power are mixed for wind power generation to be operated unlike the distribution system. Accordingly, if large scale development facilities such as a wind farm is adopted in concentration, the problems need to be examined and analyzed and security measures need to be taken not to out of voltage range.

  • PDF