• Title/Summary/Keyword: wind generation farm

Search Result 111, Processing Time 0.03 seconds

Wake Losses and Repositioning of Wind Turbines at Wind Farm (풍력발전단지의 후류손실 및 터빈 재배치에 관한 연구)

  • Park, Kun-Sung;Ryu, Ki-Wahn;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • The main objective of this study is to predict the wind power generation at the wind farm using various wake models. Modeling of wind farm is a prerequisite for prediction of annual energy production at the wind farm. In this study, we modeled 20 MW class Seongsan wind farm which has 10 wind turbines located at the eastern part of Jeju Island. WindSim based on the computational fluid dynamics was adopted for the estimation of power generation. The power curve and thrust coefficient with meteorology file were prepared for wind farm modelling. The meteorology file was produced based on the measured data of the Korea Wind Atlas provided by Korea Institute of Energy Research. Three types of wake models such as Jensen, Larsen, and Ishihara et al. wake models were applied to investigate the wake effects. From the result, Jensen and Ishihara wake models show nearly the same value of power generation whereas the Larsen wake model shows the largest value. New positions of wind turbines are proposed to reduce the wake loss, and to increase the annual energy production of the wind farm.

Development of a Stochastic Model for Wind Power Production (풍력단지의 발전량 추계적 모형 제안에 관한 연구)

  • Ryu, Jong-hyun;Choi, Dong Gu
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.35-47
    • /
    • 2016
  • Generation of electricity using wind power has received considerable attention worldwide in recent years mainly due to its minimal environmental impact. However, volatility of wind power production causes additional problems to provide reliable electricity to an electrical grid regarding power system operations, power system planning, and wind farm operations. Those problems require appropriate stochastic models for the electricity generation output of wind power. In this study, we review previous literatures for developing the stochastic model for the wind power generation, and propose a systematic procedure for developing a stochastic model. This procedure shows a way to build an ARIMA model of volatile wind power generation using historical data, and we suggest some important considerations. In addition, we apply this procedure into a case study for a wind farm in the Republic of Korea, Shinan wind farm, and shows that our proposed model is helpful for capturing the volatility of wind power generation.

A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms (풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

A numerical simulation of flow field in a wind farm on complex terrain

  • Lee, Myungsung;Lee, Seung Ho;Hur, Nahmkeon;Choi, Chang-Koon
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.375-383
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the wind flow around wind-power generation facilities on mountainous area of complex terrain. A digital map of eastern mountainous area of Korea including a wind farm was used to model actual complex terrain. Rotating wind turbines in the wind farm were also modeled in the computational domain with detailed geometry of blade by using the frozen rotor method. Wind direction and speed to be used as a boundary condition were taken from local meteorological reports. The numerical results showed not only details of flow distribution in the wind farm but also the variation in the performance of the wind turbines due to the installed location of the turbines on complex terrain. The wake effect of the upstream turbine on the performance of the downstream one was also examined. The methodology presented in this study may be used in selecting future wind farm site and wind turbine locations in the selected site for possible maximum power generation.

Technical Trend of Radar Radio Interference Reduction Relating to Construction of the Offshore Wind Farm (해상 풍력발전단지 조성에 따른 레이더 전파간섭 저감 기술동향)

  • Kim, Young-Dal;Jeong, Yun-Mi;Lee, Dae-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.250-256
    • /
    • 2014
  • The wind power generation is an eco-friendly clean energy that produces almost zero $CO_2$ emission, and has a good economic feasibility. As for the location, the installation of large turbines and construction of large-scale wind farm is easier on the offshore than on the land. In Korea, it is inevitable to generate offshore wind power through the offshore wind farm, and the radio interference of larger wind power generators and offshore wind power farm to broadcasting, communication and radars is becoming a core issue for constructing the offshore wind farm. In this study, the wind power generation status and rotor blade technology trend were presented, along with the technical trend of radar radio interference reduction relating to construction of the offshore wind farm.

Selection of Available Sector to Measure Power Generation for Validation of Wind Turbine Performance (풍력터빈 성능 검증을 위한 출력측정 유효영역 선정)

  • Oh, Ki-Yong;Jun, Hoon;Lee, Jun-Shin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.525-528
    • /
    • 2009
  • Power generation of wind turbine which is installed in wind farm should be measured to predict economic feasibility of wind farm. Also electric power company want to verify wind turbine performance which is stated by manufacturer. The International Electrotechnical Commission(IEC) published 61400-12-1 "Power performance measurements of electricity producing wind turbines" for test of wind turbine power performance. In this paper, measurable sector of wind speed is analysed based on IEC 61400-12-1 to verify power curve of wind turbine with various wind turbine in wind farm.

  • PDF

Effect of a large-scale wind farm on power system transient stability (대단위 풍력발전단지의 과도 안정도 특성에 관한 연구)

  • Yoon, Dong-Hee;Oh, Sea-Sung;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.226-227
    • /
    • 2006
  • Wind power is one of the fastest growing distributed generation types. As part of a worldwide trend, the concerns of large wind generation have been risen rather than small wind generation since it influences the whole power system Including the transient stability. The objective of this paper is to understand the effect of a large-scale wind generation on power system transient stability and to develop a systematic procedure to assess the effect according to the location and capacity of a wind farm. In the proposed procedure, an index is presented to evaluate the appropriateness of the location and capacity of a wind farm for transient stability contingencies.

  • PDF

The Study on Correction of Protective Relaying Set Value for the Power Electric Network Paralleled with Wind Farm (풍력전단지의 계통 연계 운전에 따른 보호 계전기 설정치 정정에 관한 고찰)

  • Jang, Sung-Il;Choi, Don-Man;Choi, Jeong-Hwan;Kim, Kwang-Ho;Oh, Jong-Youl;Kim, Joo-Yearl
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.487-490
    • /
    • 2002
  • Wind farm paralleled with electric power network can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the power line with wind farm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator. Consequently, it is difficult to detect the fault happened in the distribution network connected with wind generator. This paper describes the influence of wind turbine generator on the protective relaying system for detecting the fault occurred in a power line network. Simulation results shows that the fault current depends on the fault impedance, location, and the capacity of wind farm and distribution network load.

  • PDF

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

Analysis of Wind Environments for Siting a Wind Farm (풍력발전 단지조성을 위한 바람환경 분석)

  • 김현구;최재우;손정봉;정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.745-756
    • /
    • 2003
  • An analysis of wind environments using computational fluid dynamics and an evaluation of wind resources using measurement data obtained from meteorological observation sites at Homi-Cape, Pohang have been carrid out for siting a wind farm. It was shown that a numerical simulation using computational fluid dynamics would provide reliable wind resource map in complex terrain with land-sea breeze condition. As a result of this investigation, Homi-Cape wind farm with 11.25 ㎿ capacity has been designed for maximum power generation and 25.7 GWh electricity production is predicted.