• Title/Summary/Keyword: wind generation

Search Result 1,267, Processing Time 0.027 seconds

The Symbolic System and Architectural Expression of the Zhōuyì Inherent in Taekpungdang of Taekdang Lee Sik (택당 이식의 택풍당에 내재된 『주역』의 상징체계와 건축 표현)

  • Nam, Chang-Keun;Choi, Jeong-Jun
    • Journal of architectural history
    • /
    • v.32 no.4
    • /
    • pp.19-33
    • /
    • 2023
  • This study investigated the architectural expression of Taekpungdang(澤風堂, The Pond and Wind House) built by the Neo-Confucianist Taekdang Lee Sik(澤堂 李植, 1584~1647) from the perspective of the symbolic system of the Zhōuyì(『周易』, Classic of Changes). This study examined the historical context, personal history, and construction process of Taekpungdang at the time of its creation through his collection of writings, the Taekdanggip(澤堂集). The study also estimated the original form of Taekpungdang through field surveys and historical evidence. In addition, the architectural principles and architectural expressions inherent in the Taekpungdang were derived based on the symbolic system of "taekpungdaegwa"(澤風大過) which is Lee Sik's divination and one of the 64 trigrams in the Zhōuyì. Lee Sik, who was knowledgeable in the Zhōuyì, used divination to cope with the chaotic political situation and his own misfortunes. Accordingly, He determined the direction of his life and planned the surrounding environment, architectural structure, and form of Taekpungdang based on the rules and meanings of his divination system. He embodied the architectural space of Taekpungdang with the concept of time and space inherent in the divination of "daegwa",(大過, great exceeding). In addition, he expressed the principle of the generation of palgue,(八卦, the eight trigrams for divination) and the principle of the co-prosperity of ohaeng(五行, the five elements) through the composition of walls and windows of the house. The images of Taekpungdaegwae, which are dongyo(棟撓 wood submerged in the pond) and taekmyeolmok(澤滅木, shaking pillars), were manifested in the form of buildings. Therefore, Taekpungdang can be considered a remarkable example of a building designed through the thorough utilization of the Zhōuyì divination system.

Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis (PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향)

  • Cheunho Chu;Jongwon Yang;Ilchai Na;Yoonjin Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.202-207
    • /
    • 2023
  • In the case of driving water electrolysis by receiving surplus electricity from solar and wind power generation, operation and stopping must be repeated according to weather fluctuations. When the PEMWE(Polymer Electrolyte Membrane Water Electrolysis) is driven and stopped, the PEM fuel cell is in the same state as the PEM fuel cell due to the residual hydrogen and oxygen, and the high potential of the water electrolysis formed during operation is highly likely to cause degradation of the electrode and membrane even during stopping. In this study, in order to check how much degradation of the electrode and membrane progresses during the repeated driving/shutdown process of PEM water electrolysis, the performance decrease was measured by changing the number of driving/shutdown for 144 hours. Changes in electrode catalyst active area, hydrogen permeability and fluorine emision rate of membranes were analyzed to measure changes in the properties of electrodes and polymer membranes. Overall, the PEMWE performance decreased as the number of stops increased. When stopped 5 times in 144 hours, the IrOx catalyst activity decreased by more than 30%, and the hydrogen permeability increased by 80%, confirming that both the electrode and the membrane were deteriorated.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.

Analysis of the Effect of Heat Island on the Administrative District Unit in Seoul Using LANDSAT Image (LANDSAT영상을 이용한 서울시 행정구역 단위의 열섬효과 분석)

  • Lee, Kyung Il;Ryu, Jieun;Jeon, Seong Woo;Jung, Hui Cheul;Kang, Jin Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.821-834
    • /
    • 2017
  • The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon where the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occurs, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density in each administrative district, and as a result, the strength of heat island is also different. So It is necessary to analyze the difference of Urban Heat Island Intensity by administrative district and the cause. In this study, the UHI intensity of the administrative gu and the administrative dong were extracted from the Seoul metropolitan area and the differences among the administrative districts were examined. and linear regression analysis were conducted with The variables included in the three categories(weather condition, anthropogenic heat generation, and land use characteristics) to investigate the cause of the difference in heat UHI intensity in each administrative district. As a result of analysis, UHI Intensity was found to be different according to the characteristics of administrative gu, administrative dong, and surrounding environment. The difference in administrative dong was larger than gu unit, and the UHI Intensity of gu and the UHI Intensity distribution of dongs belonging to the gu were also different. Linear regression analysis showed that there was a difference in heat island development intensity according to the average wind speed, development degree, Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI) value. Among them, the SAVI and NDBI showed a difference in value up to the dong unit and The creation of a wind route environment for the mitigation of the heat island phenomenon is necessary for the administrative dong unit level. Therefore, it is considered that projects for mitigating heat island phenomenon such as land cover improvement plan, wind route improvement plan, and green wall surface plan for development area need to consider administrative dongs belonging to the gu rather than just considering the difference of administrative gu units. The results of this study are expected to provide the directions for urban thermal environment design and policy development in the future by deriving the necessity of analysis unit and the factors to be considered for the administrative city unit to mitigate the urban heat island phenomenon.

Management Plan for Humanistic and Ecological Characteristics of Suweol Village Forest in Tongyoung (통영 수월숲의 인문학적 특성 및 생태적 특성을 고려한 관리방안)

  • Lim, Eui-Jea;Lee, Soo-Dong;Kim, Mi-Jeong
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.85-98
    • /
    • 2013
  • In order to propose effective conservation management plan, this study verified ecological characteristics, humanities and Social characteristics. The research site is private property which is owned belonging to the Kim's of Gimhae that have long history. The study site is more than a thousand years old and was created for protecting from typhoon. There held the religious ritual what is called Dongsinje until 1960s. There have been protected and managed by the villagers. As the results of analysis, the area of windbreak are $12,392.69m^2$. The windbreak is dominated old years deciduous broad-leaved tree such as Zelkova serrata, Celtis sinensis, Aphananthe aspera. Around there were farmlands(52.1%), urbanized area(26.3%), forest area(16.6%). The vegetation communities of windbreak were classified by considering the dominant species and current status of forest. The forest types are following as; A. aspera community(I) which is using less pressure, Platycarya strobilacea-Carpinus coreana-Z. serrata community(II). Z. serrata community(III) which is using high pressure, Z. serrata-A. aspera community(IV), Z. serrata community(V) which is damaged under canopy trees. The windbreak was in good condition whereas, there were concerns the some wrong status was being undermined such as the wrong forest restoration projects in the past, the trails that is penetrating inside the forest, building up education facilities. Therefore, in order to restore the value of windbreak what is so called Suwol forest, we should improve the problems of forest ecosystem such as wrong management, forest fragmentation by facilities and decline in forest by lack of growing the next generation trees. In addition, we should remove excessive resting facilities and lead to passive use of forest. to improve the way of wrong management, moreover, we should close off he trails that is penetrating inside the forest for improving fragmentation. We should restore vegetation restoration and fostering the next generation trees for forest ecosystem. In order to restore unique of histo-cultural and ecological forest landscape, the next generation trees should be grown up that is the dominant species in Suwol forest. Moreover, as a results of comparing the between good vegetation communities and damaged vegetation communities, it is necessary to complementary planting for demeged vegetation communities, therefore there needs to 10.8 under canopy trees, 79.7 shrubs.

Effect of Curing Conditions on Inhibition of Tuber Rot in Subtropical Yam (Dioscorea alata) during Storage (아열대 마(Dioscorea alata)의 저장중 부패 억제를 위한 큐어링 효과)

  • Kim, Ki-Sun;Kwon, Soon-Bae;Chang, Kwang-Jin;Hong, Sae-Jin;Kim, Byung-Sup
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 2012
  • In order to improve storability of subtropical yam produced in South Korea, the major pathogens found during the storage were isolated and identified of the pathogenicity, and rot inhibition effect was studied based on the curing treatment condition. Penicillium sclerotigenum and Penicillium polonicum were identified as major pathogens causing rot in subtropical yam during storage, and P. sclerotigenum had stronger pathogenicity. Only the cut surface which has been made during a harvest and has been made smooth before curing generated a normal callus layer. The cut surface of tuberous root was cured in 95% of relativity humidity for three days at $23^{\circ}C$, and cured at $28^{\circ}C$ and $33^{\circ}C$. The observation of callus layer showed that the $23^{\circ}C$ treatment group had similar color saturation between tuberous root and pellicle, while the groups treated above $28^{\circ}C$ showed clear distinction. The generation rate of callus 0.5mm or bigger was 93 percent at $28^{\circ}C$ treatment, 96% at $33^{\circ}C$ treatment, but was 52% at $23^{\circ}C$ treatment. The conventional curing treatment group that used wind or sunlight at room temperature created little callus layer. The infection rate of pathogens according to the relative humidity inside the storage room was low at 40% and 60% of humidity, and the curing treatment period did not make a difference. When the humidity inside the storage room was 80%, all treatment groups rapidly increased the fungal pathogens. The rotten rate of each treatment was studied after 180 days during which the storage temperature was maintained at $16^{\circ}C$ and relative humidity 60%. While the rotten rate of tuberous root that has been cut in conventional curing treatment based on solar and wind was 43%, the one cured at over $28^{\circ}C$ and created the callus layer was less than 18%. While even a healthy tuberous root showed 25% of rotten rate in the traditional treatment group, the one cured at over $28^{\circ}C$ was less than 10%. The weight loss was 1-6% lower in the forced treatment group than in the conventional treatment group.

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

Indicators and Planning Features of Ecologically Based Urban Regeneration -Cases from Hamburg, Germany and Copenhagen, Denmark (생태기반형 도시재생의 계획지표 및 특성에 관한 연구 -독일 함부르크와 덴마크 코펜하겐 사례를 중심으로)

  • Rhee, Bum-Hun;Chang, Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.158-166
    • /
    • 2018
  • Contrary to urban development, urban regeneration is a process of land development through conservation, restoration, and management. In particular, ecologically based urban regeneration is an attempt to improve the quality of life in an area, establish a stable settlement space, and revitalize the local economy by considering the ecological environment. In this regard, the objectives of this study were to establish theoretical concepts and analyze the successful foreign cases of ecologically based urban regeneration, and propose a direction of socio-economic regeneration along with the physical-environmental regeneration of urban areas in Korea. The study results suggest the following. First, strategies must be developed to coordinate public transportation, such as buses and subways, by considering the importance of bicycle riders, along with the sustainable-commuting system. Second, both the importance of planning parks and trails around water systems in various scales while maintaining the existing natural environment as well as using natural elements, such as electric vehicles and wind-power generation systems, were emphasized. Third, urban regeneration for increased energy efficiency requires specific architectural planning and facilities. Fourth, education and research for easy access by the public, as well as public-private partnership, will be needed in the regeneration process.

Soil Erosion Assessment Tool - Water Erosion Prediction Project (WEPP) (토양 침식 예측 모델 - Water Erosion Prediction Project (WEPP))

  • Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Man;Ko, Byong-Gu;Lee, Jong-Sik;Flanagan, D.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.235-238
    • /
    • 2008
  • The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirical erosion prediction technologies, the WEPP model simulates many of the physical processes important in soil erosion, including infiltration, runoff, raindrop detachment, flow detachment, sediment transport, deposition, plant growth and residue decomposition. The WEPP included an extensive field experimental program conducted on cropland, rangeland, and disturbed forest sites to obtain data required to parameterize and test the model. A large team effort at numerous research locations, ARS laboratories, and cooperating land-grant universities was needed to develop this state-of-the-art simulation model. The WEPP model is used for hillslope applications or on small watersheds. Because it is physically based, the model has been successfully used in the evaluation of important natural resources issues throughout the United State and in several other countries. Recent model enhancements include a graphical Windows interface and integration of WEPP with GIS software. A combined wind and water erosion prediction system with easily accessible databases and a common interface is planned for the future.