• Title/Summary/Keyword: wind fields

Search Result 516, Processing Time 0.027 seconds

NUMERICAL SIMULATION AND VISUALIZATION OF THE FLOW AROUND THE DARIUS WIND TURBINE

  • Lee Mi Young;Kawamura Tetuya
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • A fundamental understanding of the flow around the wind turbine is important to investigate the performance of new type of wind turbine. This study presents the simulation of three dimensional flow fields around the Darius wind turbine as an example. Incompressible Navier-Stokes equations are used for this simulation. The rotating coordinate system that rotates in the same speed of the turbine is used in order to simplify the boundary condition on the blades. Additionally, the boundary fitted coordinate system is employed in order to express the shape of the blades precisely. Fractional step method is used to solve the basic equations. Third order upwind scheme is chosen for the approximation of the non-linear terms since it can compute the flow field stably even at high Reynolds number without any turbulence models. The flow fields obtained in this study are highly complex due to the three dimensionality and are visualized effectively by using the technique of the computer graphics.

Simulation Study of Solar Wind Interaction with Lunar Magnetic Fields

  • Choi, Cheong Rim;Dokgo, Kyunghwan;Woo, Chang Ho;Min, Kyoung Wook
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Particle-in-cell simulations were performed to understand the interaction of the solar wind with localized magnetic fields on the sunlit surface of the Moon. The results indicated a mini-magnetosphere was formed which had a thin magnetopause with the thickness of the electron skin depth. It was also found that the solar wind penetrated into the cavity of the magnetosphere intermittently rather than in a steady manner. The solar wind that moved around the magnetosphere was observed to hit the surface of the Moon, implying that it may be the cause of the lunar swirl formation on the surface.

Mathematical explanation on the POD applications for wind pressure fields with or without mean value components

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin;Chen, Huai
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.367-383
    • /
    • 2016
  • The influence mechanism of mean value components, noted as $P_0$, on POD applications for complete random fields $P_C(t)$ and fluctuating random fields $P_F(t)$ are illustrated mathematically. The critical philosophy of the illustration is introduction of a new matrix, defined as the correlation function matrix of $P_0$, which connect the correlation function matrix of $P_C(t)$ and $P_F(t)$, and their POD results. Then, POD analyses for several different wind pressure fields were presented comparatively as validation. It's inevitable mathematically that the first eigenmode of $P_C(t)$ resembles the distribution of $P_0$ and the first eigenvalue of $P_C(t)$ is close to the energy of $P_0$, due to similarity of the correlation function matrixs of $P_C(t)$ and $P_0$. However, the viewpoint is not rigorous mathematically that the first mode represents the mean pressure and the following modes represent the fluctuating pressure when $P_C(t)$ are employed in POD application. When $P_C(t)$ are employed, POD results of all modes would be distorted by the mean value components, and it's impossible to identify $P_0$ and $P_F(t)$ separately. Consequently, characteristics of the fluctuating component, which is always the primary concern in wind pressure field analysis, can only be precisely identified with $P_0$ excluded in POD.

Estimation of Typhoon-induced Extreme Wind Speeds over Coastal region of Gyeongsangnam-do Province (경상남도 해안 지역에서의 태풍에 의한 극한 풍속 추정)

  • Lee, Young-Kyu;Lee, Sung-Su;Kim, Hak-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.85-89
    • /
    • 2007
  • Data of the typhoon affecting Korean peninsula from 1951 to 2005 are obtained from the RSMC best track and six climatological characteristics of the typhoons are examined. Local wind speeds are obtained by the physical model for wind fields. Typhoons are generated by the Monte Carlo simulation and their wind speeds are distributed using Weibull CDF. Simulated typhoon wind speeds are used to obtain different wind speeds corresponding their mean recurrence intervals.

  • PDF

The Effect of Duct Inlet Condition on Flow Characteristics of Fan (덕트의 입구조건이 팬의 특성에 미치는 영향)

  • Kim, J.S.;Cho, K.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1995
  • The effects of duct inlet conditions on fan characteristics and upper wind velocity fields were investigated for two kinds of impellers. As the duct inlet condition, the relative positions between duct inlet and fan impeller and the size of baffle plate mounted on a duct inlet were selected. The 3-dimensional velocity components in flow fields were measured by a 5-holes pitot tube. From the results of measurements, it was found that the size of baffle plate scarecely effect on upper wind flow fields and characteristics of fan. It was also confirmed that the upper wind velocity distributions can be estimated by the potential flow field with large baffle plate at duct inlet.

  • PDF

The Influence of Topography on $SO_2$ Concentration is Seoul Area (서울 지역 $SO_2$ 농도 분포에 미치는 지형의 영향)

  • 박일수;김정우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 1991
  • An investigation is carried out for the role of topography in governign the mesoscale distribution of $SO_2$ concentration in Seoul. The three dimensional wind fields computed for a given synoptic meteorological condition by an atmospheric mesoscale model in the terrain following coordinate have been employed to compute the three dimensional mesoscale distributions of $SO_2$ concentration by the diffusion model in Seoul area. Terrain may affect the mesoscale distributions of $SO_2$ concentration through its influence on the mesoscale wind fields. This study discusses only the terrain effect on the concentration through its modification of the wind. This effect is to produce higher concentration in lower area according to the structure of divergence fields derived from and atmospheric mesoscale model.

  • PDF

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area (수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구)

  • Jeong, Ju-Hee;Kim, Yoo-Keun;Moon, Yun-Seob;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.640-652
    • /
    • 2007
  • The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.

Skillful Wind Field Simulation over Complex Terrain using Coupling System of Atmospheric Prognostic and Diagnostic Models (대기예보모형과 진단모형 결합을 통한 복잡지형 바람장 해석능력 평가)

  • Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan;Kim, Min-Jung;Park, Soon-Young;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to from during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.