• 제목/요약/키워드: wind disturbance

검색결과 127건 처리시간 0.031초

SODAR와 LIDAR를 이용한 풍속 측정 (Wind speed measurement using SODAR and LIDAR)

  • 지영미;김현구;정진화;한경섭;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.453-455
    • /
    • 2009
  • The wind speed measurement is performed using SODAR and LIDAR to evaluate availability of remote sensing in assessment of wind resource. The intercomparison comprises time series, correlation analysis and recovery rate. It shows that LIDAR is more effective than using SODAR to measure wind speed in ambient disturbance.

  • PDF

횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계 (Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind)

  • 임형호;좌은혁;이경수
    • 자동차안전학회지
    • /
    • 제12권3호
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Motion Identification using Neural Networks and Its Application to Automatic Ship Berthing under Wind

  • Im, Nam-Kyun;Kazuhiko Hasegawa
    • Journal of Ship and Ocean Technology
    • /
    • 제6권1호
    • /
    • pp.16-26
    • /
    • 2002
  • In this paper, a motion identification method using neural networks is applied to automatic ship berthing to overcome disturbance effects. Motion identification is used to estimate the effect of environmental disturbance. Two rule-based algorithms have been developed to over-come disturbance. The first rule based-algorithm was designed to overcome lateral disturbance when a ship's lateral speed is affected by it. The second rule-based algorithm was also designed to overcome longitudinal disturbance when a ship's angular velocity is changed by it. Finally, numerical simulations for automatic berthing are carried out, and the suggested control system is proved to be more practical under disturbance circumstances.

Development and Characterization of an Atmospheric Turbulence Simulator Using Two Rotating Phase Plates

  • Joo, Ji Yong;Han, Seok Gi;Lee, Jun Ho;Rhee, Hyug-Gyo;Huh, Joon;Lee, Kihun;Park, Sang Yeong
    • Current Optics and Photonics
    • /
    • 제6권5호
    • /
    • pp.445-452
    • /
    • 2022
  • We developed an adaptive optics test bench using an optical simulator and two rotating phase plates that mimicked the atmospheric turbulence at Bohyunsan Observatory. The observatory was reported to have a Fried parameter with a mean value of 85 mm and standard deviation of 13 mm, often expressed as 85 ± 13 mm. First, we fabricated several phase plates to generate realistic atmospheric-like turbulence. Then, we selected a pair from among the fabricated phase plates to emulate the atmospheric turbulence at the site. The result was 83 ± 11 mm. To address dynamic behavior, we emulated the atmospheric disturbance produced by a wind flow of 8.3 m/s by controlling the rotational speed of the phase plates. Finally, we investigated how closely the atmospheric disturbance simulation emulated reality with an investigation of the measurements on the optical table. The verification confirmed that the simulator showed a Fried parameter of 87 ± 15 mm as designed, but a little slower wind velocity (7.5 ± 2.5 m/s) than expected. This was because of the nonlinear motion of the phase plates. In conclusion, we successfully mimicked the atmospheric disturbance of Bohyunsan Observatory with an error of less than 10% in terms of Fried parameter and wind velocity.

Inertial Control of a DFIG-based Wind Power Plant using the Maximum Rate of Change of Frequency and the Frequency Deviation

  • Lee, Hyewon;Kim, Jinho;Hur, Don;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.496-503
    • /
    • 2015
  • In order to let a wind generator (WG) support the frequency control of a power system, a conventional inertial control algorithm using the rate of change of frequency (ROCOF) and frequency deviation loops was suggested. The ROCOF loop is prevailing at the initial stage of the disturbance, but the contribution becomes smaller as time goes on. Moreover, its contribution becomes negative after the frequency rebound. This paper proposes an inertial control algorithm of a wind power plant (WPP) using the maximum ROCOF and frequency deviation loops. The proposed algorithm replaces the ROCOF loop in the conventional inertial control algorithm with the maximum ROCOF loop to retain the maximum value of the ROCOF and eliminate the negative effect after the frequency rebound. The algorithm releases more kinetic energy both before and after the frequency rebound and increases the frequency nadir more than the conventional ROCOF and frequency loops. The performance of the algorithm was investigated under various wind conditions in a model system, which includes a doubly-fed induction generator-based WPP using an EMTP-RV simulator. The results indicate that the algorithm can improve the frequency drop for a disturbance by releasing more kinetic energy.

풍력발전시스템 개별피치제어설계 및 피로해석에 관한 연구 (Design of Individual Pitch Control and Fatigue Analysis of Wind Turbine)

  • 전경언;노태수;김국선
    • 대한기계학회논문집A
    • /
    • 제38권1호
    • /
    • pp.1-9
    • /
    • 2014
  • 로터에 작용하는 불균형한 반복 하중은 풍력발전기에 구조적 하중을 발생시키고 이러한 하중이 구조물에 지속적으로 누적되면 피로 파괴와 수명 단축을 발생시킨다. Individual pitch control(IPC)는 이러한 구조적 하중을 저감시키고 풍력발전기의 작동 수명 연장에 효과가 있는 제어 방법이다. 본 연구에서는 Decentralized LQR(DLQR)과 Disturbance accommodating control(DAC)를 이용한 IPC 설계를 제시한다. DLQR은 로터 회전속도 제어를 위해 사용하였고 DAC는 블레이드에 외란으로 작용하는 바람(난류) 효과를 상쇄하도록 구성하였다. 제시된 IPC제어기의 구조적 하중 저감 효과는 Gain-scheduled PI로 설계된 Collective pitch control(CPC)과 비교하여 확인하였다. 또한, IPC의 구조물 하중 저감 효과를 확인하기 위해 피로 누적에 의한 손상정도를 나타내는 피로등가하중(DEL)을 이용하였다.

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Wind pressure characteristics for a double tower high-rise structure in a group of buildings

  • Tse, K.T.;Wang, D.Y.;Zhou, Y.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.491-515
    • /
    • 2013
  • Wind pressure characteristics on a double tower high-rise structure, which is disturbed by surrounding buildings, were investigated using large eddy simulation (LES) and 1:300 scale wind tunnel experiments. The computational simulation technique and wind tunnel experimental technique were described in detail initially. Comparisons of computational results with the experimental data have subsequently been carried out to validate the reliability of LES. Comparisons have been performed in detail for the mean and fluctuating pressure coefficients. Detailed explanations of each comparison were given in the paper. To study further on the pressure coefficients on the building surfaces, parametric studies on shape coefficient and spatial correlation were performed and investigated. The numerical and experimental results presented in this paper advance understanding on wind field around buildings and the application of LES and wind tunnel tests.

자동조타로써 항행하는 선박에 작용하는 불규칙 외란 추정법에 관한 고찰 (Evaluation of Irregular Disturbances to Ships in Autopilot Navigation)

  • 이경우;손경호;김진형
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1995년도 춘계학술발표회 논문집
    • /
    • pp.65-92
    • /
    • 1995
  • The final aim of our research project is a study on assessment of automatic steering system of ships in open seas. In order to achieve this aim we need to know the characteristics of each component of the system and also to know the characteristics of disturbance to ship dynamcis. In this paper we provide calculation method of irregular disturbance to ships in autopilot navigation in open seas and also show calculation examples about two kinds of ship ore carrier and fishing boat. The disturbance consists of irregular wave and random wind, The disturbance is calculated as equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated. Further investigation concerning to performance index of autopilot system and energy loss related to automatic course keeping will be dealt with in another paper,

  • PDF

자동조타로써 항행하는 선박에 작용하는 불규칙 외란 추정법에 관한 고찰 (Evaluation of Irregular Disturbances to Ships in Autopilot Navigation)

  • 손경호;이경우;김진형
    • 한국항해학회지
    • /
    • 제19권2호
    • /
    • pp.1-12
    • /
    • 1995
  • The final aim of our research project is a study on assessment of automatic steering system of ships in open seas. In order to achieve this aim, we need to know the characteristics of each component of the system, and also to know the characteristics of disturbance to ship dynamics. In this paper, we provide calculation method of irregular disturbance to ships in autopilot navigation in open seas, and also show calculation examples about two kinds of ship, ore carrier and fishing boat. The disturbance consists of irregular wave and random wind. The disturbance is calculated as equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated. Further investigation concerning to performance index of autopilot system and energy loss related to automatic course keeping, will be dealt with in another paper.

  • PDF