• 제목/요약/키워드: wind direction shear

검색결과 43건 처리시간 0.025초

풍동 조건의 마이크로폰 어레이 측정에서 전단층 보정에 관한 연구 (Study on Shear Layer Correction of Microphone Array Measurement in the Wind Tunnel Test)

  • 김위준;이욱;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.92-96
    • /
    • 2007
  • Microphone array beamforming method has been recognized as an important aeroacoustic research field and become a standard technique in localizing sound sources. This method also used in flight acoustic measurement, and especially, it is very useful when measure sounds inside the wind tunnel. In measuring sound which is inside the wind tunnel by traditional beamforming method, there are some errors caused by airstream. The speed and the propagation path of the sound changes as it travel through the airstream. This makes the error which the position of sound is changed a little bit to the down stream direction. In this paper, validation test has made about the correction equation for this wind effects of previous researches. And beamforming including shear layer correction was performed about a sound source in the anechoic open-jet windtunnel.

  • PDF

1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석 (Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade)

  • 조봉현;이창수;최성옥;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

Fragility curves for woodframe structures subjected to lateral wind loads

  • Lee, Kyung Ho;Rosowsky, David V.
    • Wind and Structures
    • /
    • 제9권3호
    • /
    • pp.217-230
    • /
    • 2006
  • This paper describes a procedure to develop fragility curves for woodframe structures subjected to lateral wind loads. The fragilities are cast in terms of horizontal displacement criteria (maximum drift at the top of the shearwalls). The procedure is illustrated through the development of fragility curves for one and two-story residential woodframe buildings in high wind regions. The structures were analyzed using a monotonic pushover analysis to develop the relationship between displacement and base shear. The base shear values were then transformed to equivalent nominal wind speeds using information on the geometry of the baseline buildings and the wind load equations (and associated parameters) in ASCE 7-02. Displacement vs. equivalent nominal wind speed curves were used to determine the critical wind direction, and Monte Carlo simulation was used along with wind load parameter statistics provided by Ellingwood and Tekie (1999) to construct displacement vs. wind speed curves. Wind speeds corresponding to a presumed limit displacement were used to construct fragility curves. Since the fragilities were fit well using a lognormal CDF and had similar logarithmic standard deviations (${\xi}$), a quick analysis to develop approximate fragilities is possible, and this also is illustrated. Finally, a compound fragility curve, defined as a weighted combination of individual fragilities, is developed.

Mean wind loads on T-shaped angle transmission towers

  • Guohui Shen;Kanghui Han;Baoheng Li;Jianfeng Yao
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.367-379
    • /
    • 2024
  • Compared with traditional transmission towers, T-shaped angle towers have long cross-arms and are specially used for ultrahigh-voltage direct-current (UHVDC) transmission. Nevertheless, the wind loads of T-shaped towers have not received much attention in previous studies. Consequently, a series of wind tunnel tests on the T-shaped towers featuring cross-arms of varying lengths were conducted using the high-frequency force balance (HFFB) technique. The test results reveal that the T-shaped tower's drag coefficients nearly remain constant at different testing velocities, demonstrating that Reynolds number effects are negligible in the test range of 1.26 × 104-2.30 × 104. The maximum values of the longitudinal base shear and torsion of the T-shaped tower are reached at 15° and 25° of wind incidence, respectively. In the yaw angle, the crosswind coefficients of the tower body are quite small, whereas those of the cross-arms are significant, and as a result, the assumption in some load codes (such as ASCE 74-2020, IEC 60826-2017 and EN 50341-1:2012) that the resultant force direction is the same as the wind direction may be inappropriate for the cross-arm situation. The fitting formulas for the wind load-distribution factors of the tower body and cross-arms are developed, respectively, which would greatly facilitate the determination of the wind loads on T-shaped angle towers.

The Suitability of European Designed Wind Turbines for the East Asian Market

  • Brown, G.R.D.;Barthelmie, R.J.;Kim, Hyun-Goo
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.825-831
    • /
    • 2009
  • A first step review is completed on the suitability of European designed wind turbines in an East Asia climate. Six parameters are chosen for detailed analysis of proper meteorological measures from flat, hilly, forested, coastal and offshore sites in West Europe and East Asia: mean wind speed, 10 minute mean wind speed distribution, turbulence intensity, wind shear, 3 second extreme wind speed and 10 minute direction change. All six parameters are assessed with a view for contrast with the wind turbine design standard IEC61400. The diurnal and seasonal variation, average and extreme values of each parameter are calculated where appropriate. Industry standard software and analysis techniques have been employed to assess the applicability of existing wind turbine design standards and design guidelines for the East Asian market.

Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

  • Zou, Lianghao;Xu, Guoji;Cai, C.S.;Liang, Shuguo
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.231-251
    • /
    • 2016
  • This paper presents the experimental results of the wind tunnel tests for three symmetric, rectangular, tall building models on a typical open terrain considering the torsional motion-induced vibrations. The time histories of the wind pressure on these models under different reduced wind speeds and torsional amplitudes are obtained through the multiple point synchronous scanning pressure technique. Thereafter, the characteristics of both the Root Mean Square (RMS) coefficients and the spectra of the base shear/torque in the along-wind, across-wind, and torsional directions, respectively, are discussed. The results show that the RMS coefficients of the base shear/torque vary in the three directions with both the reduced wind speeds and the torsional vibration amplitudes. The variation of the RMS coefficients in the along-wind direction results mainly from the change of the aerodynamic forces, but sometimes from aeroelastic effects induced by torsional vibration. However, the variations of the RMS coefficients in the across-wind and torsional directions are caused by more equal weights of both the aerodynamic forces and the aeroelastic effects. As such, for the typical tall buildings, the modification of the aerodynamic forces in the along-wind, across-wind, and torsional directions, respectively, and the aeroelastic effects in the across-wind and torsional directions should be considered. It is identified that the torsional vibration amplitudes and the reduced wind speeds are two significant parameters for the aerodynamic forces on the structures in the three directions.

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

한반도 중규모 대류복합체의 발달특성에 관한 연구 (Characters of Mesoscale Convective Complex Development in Korean Peninsula)

  • 이순환;원효성
    • 한국지구과학회지
    • /
    • 제26권7호
    • /
    • pp.698-705
    • /
    • 2005
  • 한반도 집중호우를 유발시키는 중규모대류복합체는 매우 복잡한 특성을 띠고 있다. 2004년 7월 14일 발생한 중 규모 대류복합체의 발달메커니즘을 분석한 결과, a) 대류복합체 생성 전에 강한 남서기류의 유입이 있었으며, b) 600hPa고도에서 강한 역전층이 나타났다. 역전층은 상층과 하층간의 상당온위의 차이를 유발하여 대기불안정을 더욱 강화시켰다. 그리고 c) 일반적인 중규모대류복합체 특징인 풍향의 쉬어보다는 풍속의 쉬어에 의해 대류계의 열역학 불안정이 강화되었다. 그리고 d) 흑산도 등 해안지방에 의해 유발되는 난류 및 대기불안정으로 인하여 중규모 대류복합체가 해안지방에서 발달한 것으로 보인다. 그러므로 지형에 의한 중규모 대류 복합체의 발달메커니즘 규명이 필요하다.

복부방향 수평하중을 받는 L형 벽체의 횡보강근 구속에 따른 구조성능 평가 (Evaluation of Structural Capacity of L-shaped Walls with Different Confinement Details Under Web-direction Lateral Force)

  • 조남선;하상수;최창식;오영훈;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 2001
  • The compression toe of structural wall is designed to resist the axial compression and shear force caused by wind or earthquake. The performance of shear wall used in tall building is highly influenced by combined shear and axial force. For this reason, it is possible to result in local brittle failure because of concentrated damage in the potential plastic hinge region under severe earthquake. Thus, it is necessary to establish the lateral confinement details at the plastic hinge of shear wall so that shear wall can behave a ductile manner, The objective of this study is to evaluate the seismic performance of L-shaped walls with different confinement details. For this purpose, three wall specimens were tested experimentally and also analyzed using Nonlinear FEM package.

  • PDF