• Title/Summary/Keyword: wind direction change

Search Result 174, Processing Time 0.117 seconds

Wind Field Change Simulation before and after the Regional Development of the Eunpyeong Area at Seoul Using a CFD_NIMR_SNU Model (CFD_NIMR_SNU 모형을 활용한 은평구 건설 전후의 바람환경 변화 모사 연구)

  • Cho, Kyoungmi;Koo, Hae-Jung;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.539-555
    • /
    • 2011
  • Newly constructed, high-rise dense building areas by urban development can cause changes in local wind fields. Wind fields were analyzed to assess the impact on the local meteorology due to the land use changes during the urban redevelopment called "Eunpyeong new town" in north-western Seoul using CFD_NIMR_SNU (Computational Fluid Dynamics, National Institute of Meteorological Research, Seoul National University) model. Initial value of wind speed and direction use analysis value of AWS (Automatic Weather Station) data during 5 years. In the case of the pre-construction with low rise built-up area, it was simulated that the spatial distribution of horizontal wind fields depends on the topography and wind direction of initial inflow. But, in the case of the post-construction with high rise built-up area, it was analyzed that the wind field was affected by high rise buildings as well as terrain. High-rise buildings can generate new circulations among buildings. In addition, small size vortexes were newly generated by terrain and high rise buildings after the construction. As high-rise buildings act as a barrier, we found that the horizontal wind flow was separated and wind speed was reduced behind the buildings. CFD_NIMR_SNU was able to analyze the impact of high-rise buildings during the urban development. With the support of high power computing, it will be more common to utilize sophisticated numerical analysis models such as CFD_NIMR_SNU in evaluating the impact of urban development on wind flow or channel.

The 2021 Australian/New Zealand Standard, AS/NZS 1170.2:2021

  • John D. Holmes;Richard G.J. Flay;John D. Ginger;Matthew Mason;Antonios Rofail;Graeme S. Wood
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.95-104
    • /
    • 2023
  • The latest revision of AS/NZS 1170.2 incorporates some new research and knowledge on strong winds, climate change, and shape factors for new structures of interest such as solar panels. Unlike most other jurisdictions, Australia and New Zealand covers a vast area of land, a latitude range from 11° to 47°S climatic zones from tropical to cold temperate, and virtually every type of extreme wind event. The latter includes gales from synoptic-scale depressions, severe convectively-driven downdrafts from thunderstorms, tropical cyclones, downslope winds, and tornadoes. All except tornadoes are now covered within AS/NZS 1170.2. The paper describes the main features of the 2021 edition with emphasis on the new content, including the changes in the regional boundaries, regional wind speeds, terrain-height, topographic and direction multipliers. A new 'climate change multiplier' has been included, and the gust and turbulence profiles for over-water winds have been revised. Amongst the changes to the provisions for shape factors, values are provided for ground-mounted solar panels, and new data are provided for curved roofs. New methods have been given for dynamic response factors for poles and masts, and advice given for acceleration calculations for high-rise buildings and other dynamically wind-sensitive structures.

The Application of Wind Profiler Data and Its Effects on Wind Distributions in Two Different Coastal Areas (연안지역 지형적 특성에 따른 윈드프로파일러 자료의 자료동화 효과 분석)

  • Jeong, Ju-Hee;Lo, So-Young;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.689-701
    • /
    • 2010
  • The effects of high-resolution wind profiler (HWP) data on the wind distributions were evaluated in two different coastal areas during the study period (23-26 August, 2007), indicating weak-gradient flows. The analysis was performed using the Weather Research and Forecasting (WRF) model coupled with a three-dimensional variational (3DVAR) data assimilation system. For the comparison purpose, two coastal regions were selected as: a southwestern coastal (SWC) region characterized by a complex shoreline and a eastern coastal (EC) region surrounding a simple coastline and high mountains. The influence of data assimilation using the HWP data on the wind distributions in the SWC region was moderately higher than that of the EC region. In comparison between the wind speed and direction in the two coastal areas, the application of the HWP data contributed to improvement of the wind direction distribution in the SWC region and the wind strength in the EC region, respectively. This study suggests that the application of the HWP data exerts a large impact on the change in wind distributions over the sea and thus can contribute to the solution to lack of satellite and buoy data with their observational uncertainty.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

Derivation of Consideration Factors for Fine Dust Measurement through GIS Mapping (단지조성공사의 미세먼지 측정 및 GIS Mapping을 통한 미세먼지 측정 고려요소 도출)

  • Kim, Young Hyun;Han, Jae Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.163-164
    • /
    • 2020
  • When measuring fine dust at a large-scale site such as complex construction, the change in the value of fine dust measurement is large due to the influence of the time, location, wind speed, wind direction, and humidity. This study aims to find out the results of measuring fine dust in an actual construction site and inferring the changes.

  • PDF

A Study on Driving Characteristics of Power Compensation Discontinuity Energy Occurrence System (탄성에너지를 이용한 전력보상 불연속에너지발생시스템의 운전특성에 관한 연구)

  • Park, Se-Jun;Lim, Jung-Yeol;Yoon, Suk-Am;Gang, Byeong-Bog;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.622-626
    • /
    • 2002
  • Combined generation system of photovoltaic and wind power is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually, because the energy source is changeable and stable through change of weather as irradiation, temperature, wind speed, wind speed, wind direction, seasons, etc..

  • PDF

A Study on Driving Characteristics of Power Conpensation Device using elasticit (탄성에너지를 이용한 전력보상장치의 운전특성에 관한 연구)

  • Park, Se-Jun;Kang, Byung-Bog;Lim, Jung-Yeol;Yoon, Jeong-Phil;Cho, Kyung-Jae;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.235-239
    • /
    • 2002
  • Combined generation system of photovoltaic and wind power is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually, because the energy source is changeable and stable through change of weather as irradiation, temperature, wind speed, wind speed, wind direction, seasons, etc..

  • PDF

KINETIC PROPERTIES OF MAGNETIC DECREASES OBSERVED IN THE SOLAR WIND AT ~1 AU

  • LEE, ENSANG;PARKS, GEORDE K.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, we investigate the kinetic properties of magnetic decreases observed in the solar wind at ~1 AU using the Cluster observations. We study two different magnetic decreases: one with a short observation duration of ~2.5 minutes and stable structure and the other with a longer observation duration of ~40 minutes and some fluctuations and substructures. Despite the contrast in durations and magnetic structures, the velocity space distributions of ions are similar in both events. The velocity space distribution becomes more anisotropic along the direction parallel to the magnetic field, which differs from observations obtained at high heliographic latitudes. On the other hand, electrons show different features from the ions. The core component of the electrons shows similar anisotropy to the ions, though the anisotropy is much weaker. However, while ions are heated in the magnetic decreases, the core electrons are slightly cooled, especially in the perpendicular direction. The halo component does not change much in the magnetic decreases from the ambient solar wind. The strahl component is observed only in one of the magnetic decreases. The results imply that the ions and electrons in the magnetic decreases can behave differently, which should be considered for the formation mechanism of the magnetic decreases.

Analysis about CO Diffusion Change Caused by Climate Change Using CALPUFF (CALPUFF 모델을 이용한 기후변화에 따른 일산화탄소의 대기오염 영향 분석)

  • Ha, Minjin;Lee, Taekyeong;Lee, Im Hack;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.81-89
    • /
    • 2017
  • In this study CALPUFF was used to estimate the influence of temperature rise, according to the observation value of temperature rise based RCP scenario, on meteorological elements (wind direction, wind speed, mixing height) and the change of pollutant diffusion. According to the result. applying estimated value of year 2050 temperature rise, the mixing height is increased as per the temperature rise, so the range of atmospheric diffusion is widened. In summer case, by applying temperature rise of $4^{\circ}C$ and comparing with before applying temperature rise, there was change of diffusion range as per the change of temperature between 10 AM to 11 PM. And the range of diffusion was wider than that of before temperature rise. In winter case, by applying estimated value of temperature rise, $2.3^{\circ}C$, diffusion range has been changed between 8 AM to 4 PM, showing different diffusion aspect from summer. Also, according to the result of air pollution level assessment with temperature rise, it was proved that the ratio of area with increasing air pollution level has been getting higher by increase of temperature.

The Analysis of a Structural Stability of a 50ton Container Crane according to an Increased Design Wind velocity (설계풍속 상향 조정에 따른 50ton급 컨테이너 크레인의 구조 안정성 평가)

  • Kwon Soon-Kyu;Lee Seong-Wook;Han Dong-Seop;Shim Jae-Joon;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • This study is carried out to analyze the stability of a container crane in according to the change of a wind direction and a machinery house location when a wind load of a wind velocity, 75m/s was applied on the state stowing a container crane by a heavy wind A design wind load applied to this study was calculated in observance of 'Load Criteria of Building Structure'. And we analyzed the reactions of each supporting points according to appling a wind direction to an interval of $15^{\circ}$ in $0^{\circ}\~180^{\circ}$ and the structure stability of a container crane according to changing a machinery house location occupying $15\%$ of a container crane weight. From a results of this study, we presented a design criteria of an overturning disturbance equipment, tie-down.

  • PDF